
PDP-11 FORTH
USER'S GUIDE

John S. James
September 1979

PDP-11 FORTH USER'S GUIDE

This system implements the FORTH language model of the Forth
Interest Group, PO Box 1105, San Carlos, Ca. 94070. Nearly identical
systems also exist for 8080, 6502, 6800, 9900, and PACE; listings are
available from the Forth Interest Group. All of these F.I.G. Systems
include full-length names to 31 characters, vocabularies, and
extensive compile-time checks. They are aligned with the FORTH-78
International Standard.

This PDP-11 version of the F.I.G. common model was implemented
and extended by John S. James. It currently runs under RT-11 or RSX-
11M, and could be adapted to other operating systems or to run stand-
alone.

This manual and the computer system described are public domain.
Questions, requests for diskettes, etc. should be directed to

John S. James, P.O. Box 348, Berkeley, Ca. 94701. [Note: this
address is no longer valid; it is preserved for historical reasons.]

John S. James has released this Guide into the public domain.
Re-digitized in 2017 with previously omitted FORTH.DAT screens 49–56.

'PDP' and 'RSX' are trademarks of Digital Equipment Corporation.

PDP-11 Forth User's Guide

CONTENTS

 I. Introduction..1

 II. Getting Started...3

 III. Sample Session..5

 IV. Editor...15

 V. Assembler..23

 VI. Strings..29

 VII. Operating System Calls...33

VIII. Linkage to Other Languages (RSX)...37

 IX. Bring-Up Options...43

 X. Documentation Hints..51

 XI. FORTH.DAT Listing..53

 XII. Glossary...73

XIII. Error and Warning Messages...89

I. Introduction

This User's Guide, together with a language manual, has most of the infor-

mation you will need for using the Forth Interest Group (F.I.G.) language model

implemented on the PDP-11/LSI-11.

For a language manual, we especially recommend either A Forth Primer, by W.

Richard Stevens of Kitt Peak National Observatory, and/or Using Forth, by FORTH,

Inc. Both are available through the Forth Interest Group. Any reasonably standard

FORTH language manual will do, however. The "Forth Handy Reference" card from

F.I.G. is also recommended as a convenience.

Advanced users and anyone modifying the system should have a copy of the

Installation Manual, also from F.I.G. This manual includes a listing of the FORTH

system written in FORTH; it corresponds to this system's FORTH.MAC file, which is

written in Macro-11. For convenience, the glossary in the Installation Manual is

reprinted here.

The programs associated with this user's guide (files FORTH.MAC and

FORTH.DAT) are in the public domain and the author encourages modification and

distribution, commercially or otherwise. Credit should be given to the Forth

Interest Group, P.O. Box 1105, San Carlos, Ca. 94070.

1.

2.

II. Getting Started

This system is distributed on a standard diskette which boots and runs

stand-alone, or can be assembled and run under RT-11 or RSX-11M. (To modify for

other environments, only read and write a character, detect a character (option-

al), and read and write a disk block, would have to be changed.)

Either boot the diskette, or assemble, link and run the file FORTH.MAC (for

details, see Chapter IX, "Bring-Up Options", below). The system should type

FIG-FORTH V 1.3

when it comes up. Now FORTH is ready to run. The file FORTH.MAC contains the

complete FORTH language.

If the FORTH screens file is available (on the 'DK:' volume in RT-11, on your

default device and account number in RSX-11M, or on the system disk if stand-

alone), a recommended way to begin is to type

1 LOAD

(followed by a carriage return). This system uses disk "screen" #1 as a "load

screen", which is like a log-on file in other systems. Here, screen 1 loads an

editor, an assembler, and a package of string routines; these are written in FORTH

source code in FORTH.DAT in the RT-11 directory on the diskette. Screen 1 also

changes an error warning mode so that error message texts (instead of error num-

bers) are reported. (The error messages are stored on disk to save memory, and the

system is designed to be able to run without a disk if necessary.)

Compiling the editor, assembler, and string package takes about one minute on

an LSI-11, less on larger machines. The warning messages that certain words are

not unique can be ignored.

3.

4.

III. Sample Session

This is an actual terminal session, with commentary interspersed. Some

of the examples were chosen to illustrate special features of this system - the

assembler, string package and editor have not been standardized in the FORTH

community, though we are guided by common usage even when no formal standard

exists.

The assembler, etc. are documented more fully later in this User's Guide;

this section is only for illustration. Beginners in FORTH may want to start

studying simpler examples, e.g. from a language manual.

In this session, output from the computer is underlined, or (if long

sections) marked by a vertical line on the left.

 RUN FORTH
FIG-FORTH V 1.3
88 88 * .
7744 OK

'RUN FORTH' is a command to the operating system; FORTH comes up with the

message 'FIG-FORTH V 1.3'. At this point, the complete FORTH language is ready,

though the editor, assembler, and string package have not been loaded. (Many

other FORTH systems compile most of the language on start-up; our approach permits

operation without disk if necessary, saves time when bringing up the system, and

allows the entire language to be published in Macro-11, which is more accessible to

programmers not familiar with FORTH.)

5.

Now let's test the disk:

1 LIST

SCR # 1
 0 (LOAD SCREEN)
 1 DECIMAL
 2 1 WARNING ! (GET ERR MSGS, NOT #S)
 3
 4 CR ." LOADING EDITOR... " 6 LOAD 7 LOAD 8 LOAD 9 LOAD
 5 CR ." LOADING ASSEMBLER... " 10 LOAD 11 LOAD 12 LOAD 13 LOAD
 6 14 LOAD 15 LOAD
 7 CR ." LOADING STRING PACKAGE... " 19 LOAD 20 LOAD 21 LOAD
 8 22 LOAD
 9 CR
 10 : BYE FLUSH CR ." LEAVING FORTH. HAVE A GOOD DAY." CR BYE ;
 11 CR
 12
 13
 14
 15
 OK

We have listed one FORTH screen; it happens to be a "load screen" used to

load other screens. Later, when screen 1 is loaded, it will compile the editor,

assembler, and string package, which are written in FORTH source code on other

screens on the disk file FORTH.DAT. The load screen will also set the error-

message warning mode as explained above, and redefine 'BYE' (which exits FORTH and

returns to the operating system) to make sure that all disk buffers are flushed

before exiting. (Incidentally most FORTH systems run stand-alone, in complete

control of the computer except for a ROM monitor, so they don't have a 'BYE'

instruction. This system is distributed on a disk which boots and runs stand-

alone, but which also has an RT-11 directory, allowing RT-11 or RSX-11M operation

if desired.

6.

Let's try a useful definition (your output numbers might differ):

: DUMP OVER + SWAP DO I @ U. 2 +LOOP ;
 OK
1000 20 DUMP
7489 6 57421 57461 2 57461 4 5378 90 4173 OK
' DUMP 20 DUMP
1516 1430 1552 732 752 1656 6192 1874 680 65526 OK

'DUMP' takes a memory address and a number of bytes, and dumps those bytes

(as words) in whatever number base is currently in use (here decimal). (Incident-

ally, the 'U.' operation in 'DUMP' is an unsigned print.) The first example dumps

20 bytes (as 10 words) starting at memory address 1000; the second dumps 10 words

starting at the object-code address of the definition of 'DUMP' itself. Here we

are in decimal arithmetic, as the system comes up that way, but 'DUMP' would also

work in octal, binary, or other number bases.

Now let's use the load screen to compile the assembler, etc.:

1 LOAD

LOADING EDITOR... R ISN'T UNIQUE I ISN'T UNIQUE
LOADING ASSEMBLER... R0 ISN'T UNIQUE # ISN'T UNIQUE
LOADING STRING PACKAGE...
BYE ISN'T UNIQUE
 OK

The message that various operation names are not unique (i.e. are being

redefined) is a warning which we can ignore.

Now let's use the assembler to benchmark speed or execution of an empty loop

in higher-level FORTH vs. machine code:

: TIME1 30000 0 DO LOOP ;
 OK
CODE TIME2 72460 # R0 MOV, BEGIN, R0 DEC, EQ UNTIL, NEXT, C;
 OK
: T1 30 0 DO TIME1 LOOP ;
 OK
: T2 30 0 DO TIME2 LOOP ;
 OK
T1
 OK
T2: DUMP OVER + SWAP DO I @ U. 2
 OK

7.

'TIME1' does 30,000 empty loops in FORTH; 'TIME2' does the same number (72460

octal) of machine-code loops using two instructions (DEC and BNE; this benchmark is

not intended to be definitive). 'T1' and 'T2' embed these tests in a 30-times

loop, in order to allow the code test to be timed with a watch. 'T1', 900,000

empty loops in FORTH, takes about 19 seconds on a PDP-11/45; the code loops take 3

seconds, about six times faster. Incidentally a comparable BASIC program

IAS/RSX BASIC V02-01

READY
10 FOR I%=1 TO 30
20 FOR J%=1 TO 30000
30 NEXT J%
40 NEXT I%
50 END

takes 695 seconds, 35 times slower than the higher-level FORTH. (FORTH is slower

on number-crunching, however; one test ran only nine times faster than BASIC.)

The 'DUMP' operation defined above lets us look at the object code of the

higher-level and assembly routines, respectively:

OCTAL
 OK
' TIME1 20 DUMP
1060 72460 3502 1334 1202 177776 2440 52205 OK
' TIME2 20 DUMP
12700 72460 5300 1376 12402 132 52202 120061 OK
DECIMAL
 OK

(The actual numbers in the dump of 'TIME1' will vary depending on your operating

system and linkage editor if used, and upon bring-up options.) In this example,

the machine code happens to take fewer words of memory than the FORTH. But usually

FORTH object code is considerably more compact than machine code, especially for

large programs.

When speed is important, the assembler allows us to rewrite critical routines

in code; then they have all the convenience of FORTH, and the fact that they are

code is transparent, so other operations which use those routines do not need to be

changed. The assembler also allows calls to operating system services, or to sub-

routine packages written in FORTRAN or other languages, making these features

interactively accessible from the keyboard, just as if they were native FORTH. As

we have seen, the FORTH assembler allows structured loops; these and structured

8.

conditionals can be nested (although branches to labels or numerical addresses may

be used if desired). User-defined macros are available. And the code is ready to

execute immediately after being typed in or loaded from disk, with no wait for

assembly or linkage editing.

Let's look at part of the string package:

" THIS IS A STRING"
 OK
$.
THIS IS A STRING OK
$.
$STACK EMPTY
: XX " TESTING STRINGS" ;
 OK
XX
 OK
$.
TESTING STRINGS OK
$.
$STACK EMPTY

The '"' operation (quotation mark) introduces a string; it must be followed

by one space. The string goes until the next quote, which is the delimiter, or

until the end of the line. If used outside a colon definition, '"' immediately

puts the string onto the string stack, a special stack which holds the actual

characters of the string (with length information). If used inside a colon defi-

nition, '"' stores the string within the definition in the dictionary; later, when

that part of the definition is executed, the string is pushed onto the string

stack. '$.' prints the string on top of the string stack (most accessible string).

String length can be up to 32,767 characters, depending on memory availability.

The string stack is always checked for underflow ('$STACK EMPTY') or overflow

whenever these are possible.

The following illustrates the '$+', or string concatenation, and also the

'$LEN', which gets the length of the string on top of the string stack.

9.

XX
 OK
$LEN .
15 OK
" ANOTHER TEST STRING" $+
 OK
$LEN .
34 OK
$.
TESTING STRINGSANOTHER TEST STRING OK

The following operation ('LONG', below) is defined to double a string (con-
catenate it with a copy of itself) 7 times, i.e. it makes the string 128 times as
long as it was.

: LONG 7 0 DO $DUP $+ LOOP ;
 OK
" ABCD"
 OK
$LEN .
4 OK
LONG
 OK
$LEN .
512 OK
$.
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD
ABCDABCDABCDABCDABCDABCDABCDABCD OK

To see some application examples which are on the disk, let's first make an

index of the disk. The 'INDEX' operation takes two arguments (beginning and ending

screens), and prints the first line of each screen in that range. By convention,

the first line of each screen is a comment telling what that screen has on it.

Blank lines should indicate empty screens available for use. The FORTH.DAT file

as distributed on the diskette has 70 screens; this system could handle at least

32,767 if disk space were available.

10.

1 39 INDEX

 1 (LOAD SCREEN)
 2
 3
 4 (ERROR, WARNING, AND OTHER MESSAGES - SCREENS 4 AND 5)
 5 (ERROR MESSAGES, CONTINUED)
 6 (EDITOR - SET-UP)
 7 (EDITOR - OPERATIONS)
 8 (EDITOR, SCREEN 3)
 9 (EDITOR, SCREEN 4)
 10 (ASSEMBLER) OCTAL
 11 (ASSEMBLER, CONT.) OCTAL
 12 (ASSEMBLER - INSTRUCTION TABLE) OCTAL
 13 (ASSEMBLER - CONT.) OCTAL
 14 (ASSEMBLER - REGISTERS, MODES, AND CONDITIONS) OCTAL
 15 (ASSEMBLER - STRUCTURED CONDITIONALS) OCTAL
 16
 17 (ASSEMBLER - EXAMPLES)
 18
 19 (STRING ROUTINES) DECIMAL
 20 (STRINGS - CONTINUED)
 21 (STRINGS - CONTINUED)
 22 (STRINGS - CONTINUED)
 23
 24 (TRIG LOOKUP ROUTINES - WITH SINE *10000 TABLE)
 25
 26 (FORTRAN LINKAGE, RSX)
 27
 28 (RT-11 SYSTEM-CALL EXAMPLE - DATE)
 29 (RSX-11M SYSTEM-CALL EXAMPLE - DATE)
 30 (RSX-11M SYSTEM-CALL EXAMPLE - TERMINAL I/O)
 31
 32 (EXAMPLES - RANDOM #S, VIRTUAL ARRAY, RECURSIVE CALL)
 33
 34 (CREATE BOOTABLE IMAGE ON SCREENS 40-47. FOR STAND-ALONE.)
 35 (CREATE A BINARY IMAGE ON SCREENS 40 - 47)
 36 (CREATE BOOT LOADER. NOTE - DOES NOT WRITE BOOT BLOCK)
 37 (CREATE BOOT LOADER, CONT.) OCTAL
 38 (DISK COPY FROM SYSTEM DISK TO DX1)
 39 (** CAUTION ** BINARY IMAGE IN SCREENS 40-47) OK

11.

Screen 29 uses the RSX-11M system call for the date and time. Here it is

loaded, and also listed so we can see it. The 'TIME' operation sets up the re-

entrant form of the system call ('GTIM$S'), although of course the RSX-11M macro

is never used here. (This screen as a whole is not re-entrant since it includes

the 8-word buffer 'TBUFF' to receive the information, but this buffer could be

located anywhere else, if re-entrancy were needed.)

29 LOAD
 OK
29 LIST

SCR # 29
 0 (RSX-11M SYSTEM-CALL EXAMPLE - DATE)
 1 DECIMAL
 2 0 VARIABLE TBUFF 14 ALLOT
 3 CODE TIME TBUFF # SP -) MOV, 2 400 * 75 + # SP -) MOV,
 4 377 EMT, NEXT, C;
 5 : YEAR (-> N) TIME TBUFF @ ;
 6 : MONTH (-> N) TIME TBUFF 2+ @ ;
 7 : DAY (-> N) TIME TBUFF 4 + @ ;
 8 : HOUR (-> N) TIME TBUFF 6 + @ ;
 9 : MINUTE (-> N) TIME TBUFF 8 + @ ;
 10 : SECOND (-> N) TIME TBUFF 10 + @ ;
 11 : TICK (-> N) TIME TBUFF 12 + @ ;
 12 : TICKS/SECOND (-> N) TIME TBUFF 14 + @ ;
 13
 14
 15
 OK

Screen 28 defines comparable 'YEAR', 'MONTH', and 'DAY' operations for RT-11.

Here are some uses of the date and time operations. The loop in 'X' is
indicating the time (in cumulative clock ticks) required to print the characters.

YEAR .
80 OK
MONTH .
1 OK
DAY .
21 OK
HOUR .
20 OK
MINUTE .
17 OK
SECOND .
44 OK

12.

: X 20 0 DO TICK . LOOP ;
 OK
X
0 8 16 28 40 52 4 12 24 36 48 0 8 16 28 40 52 4 12 24 OK
TICKS/SECOND .
60 OK

(Incidentally 'TICKS/SECOND' is one name; tokens are separated by blanks.

Names in this system can be up to 31 characters long, and the full name is remem-

bered, in contrast to some FORTH systems which only remember the length of the name

and the first several characters.)

Screen 24 contains a table-lookup 4-digit sine and cosine routine; it is

fast, accurate enough for most graphics applications, and it doesn't require

floating point. 'SIN' and 'COS' take an integer number of degrees (-32K to 32K),

and return the sine or cosine value multiplied by 10,000; linear interpolation

would allow fractional degrees with little loss of accuracy.

24 LOAD
 OK
0 SIN .
0 OK
90 SIN .
10000 OK
10000 SIN .
-9848 OK
7 SIN .
1219 OK
345 SIN .
-2588 OK
15000 SIN .
-8660 OK
15000 COS .
-5000 OK
-29000 COS .
-9397 OK

The '*/' operation (multiply, then divide, keeping a double-precision, 32-bit

intermediate product) allows scaling by sine or cosine, e.g.

30000 45 SIN 10000 */ .
21213 OK

This scaling would be useful in figure rotation.

13.

The whole sine/cosine lookup routine and table is on one screen. Its

detailed operation will be described in an advanced section, but let's take a

look at it now:

24 LIST

SCR # 24
 0 (TRIG LOOKUP ROUTINES - WITH SINE *10000 TABLE)
 1 : TABLE <BUILDS 0 DO , LOOP DOES> SWAP 2 * + @ ;
 2 10000 9998 9994 9986 9976 9962 9945 9925 9903 9877
 3 9848 9816 9781 9744 9703 9659 9613 9563 9511 9455
 4 9397 9336 9272 9205 9135 9063 8988 8910 8829 8746
 5 8660 8572 8480 8387 8290 8192 8090 7986 7880 7771
 6 7660 7547 7431 7314 7193 7071 6947 6820 6691 6561
 7 6428 6293 6157 6018 5878 5736 5592 5446 5299 5150
 8 5000 4848 4695 4540 4384 4226 4067 3907 3746 3584
 9 3420 3256 3090 2924 2756 2588 2419 2250 2079 1908
 10 1736 1564 1392 1219 1045 0872 0698 0523 0349 0175
 11 0000 91 TABLE SINTABLE
 12 : S180 DUP 90 > IF 180 SWAP - ENDIF SINTABLE ;
 13 : SIN (N -> SIN) 360 MOD DUP 0< IF 360 + ENDIF DUP 180 >
 14 IF 180 - S180 MINUS ELSE S180 ENDIF ;
 15 : COS (N -> COS) 90 + SIN ;
 OK

Line 1 creates a new data type, 'TABLE', using the pair of operations

'<BUILDS' and 'DOES>' which create new data types. Line 11 executes 'TABLE' to

create a table called 'SINTABLE'; of course 'TABLE' can also be used elsewhere,

creating other tables of this type (but of any length desired, not always 91).

Similarly other data types could create arrays with various (or variable) numbers

of dimensions and with run-time bounds checks if desired, various user-defined

record structures, etc. Here, 'TABLE' is defined in higher-level FORTH, making

it machine-independent; but if optimum execution speed were desired, it could be

defined in machine code, using the operation ';CODE' (not to be confused with

'CODE' - see the Assembler section).

Incidentally the operation 'SINTABLE' behaves exactly like 'SIN', except that

its arguments must be 0-90 degrees. 'S180' reflects to extend this to 0-180, 'SIN'

extends it to all values, and 'COS' is sine differing 90 degrees in phase.

BYE

LEAVING FORTH. HAVE A GOOD DAY.

14.

IV. Editor

Philosophy

There is little standardization among Forth editors. This system is a uni-

fied "line" and "string" editor, avoiding redundant commands. It de-emphasizes the

64-character line, because some machines (e.g. Apple) can't use it, and because

Forth may abandon the screen concept at some future time. Most of this editor's

commands allow default arguments. They work well together in practice, giving an

exceptionally convenient teletype-style editor (which runs on almost all terminals,

without customization). New users can learn it comfortably within an hour. This

editor requires a Forth system which keeps screens in a contiguous 1K buffer (or

the editor would have to be modified to move them to such a buffer).

Entering and Exiting the Editor

The editor must be loaded (e.g. by typing '1 LOAD'). Normally the editor

stays in memory for the rest of the session.

To edit screen 'n', type

n EDIT

and after the editing is complete, exit with

EX

which updates the disk. Or exit with

SCRATCH

to throw away the result of the session, leaving the screen on disk unchanged.

15.

To get back later and edit the same screen, type

E

with no argument. This way you don't have to remember the screen number. The

cursor position (see below) is also remembered.

Unlike many other Forth systems, the command

n LIST

does not affect the editor. While editing one screen, you can list others to look

at them.

To list the screen currently being edited, type

L

with no argument. After listing the screen, it prints the line currently holding

the cursor, with the cursor position shown as an underscore character. The cursor

starts at the beginning of line zero, when the editing session begins (with 'n

EDIT').

Moving the Cursor

To move the cursor to the beginning of any line (0-15), type

n T

which types that line after the cursor has been moved. To type the current line

without moving the cursor, just type

T

The editor keeps track of the stack depth to know whether or not an argument has

been given.

16.

To move the cursor 'n' positions, type

n M

where 'n' may be positive or negative. Without the argument, 'M' defaults to

'1 M'. The editor prevents the cursor from being moved off the screen.

Insert, Delete, and Replace

To insert at the current cursor position, type

I

followed by a space, followed by the string to insert, followed by a carriage

return. The first space after the 'I' is a delimiter and is not part of the

string. When the string is inserted, the rest of the line will be pushed over,

with characters lost on the right. If the insert string goes beyond the end of the

line, it will replace characters on the next line. 'n I' (with an argument) moves

the cursor to the beginning of line 'n', then inserts there.

To delete 'n' characters, type

n D

where 'n' may be positive or negative. The rest of the line is moved over with

blank fill characters added on the right. 'D' defaults to '1 D'. To prevent

serious errors, the command will only delete characters within one line.

To replace, starting with the current cursor position, type

R

followed by a blank, and then by the string to replace. 'n R' moves the cursor to

the beginning of line 'n' first. A maximum of 64 characters can be replaced in one

command; these 64 may overflow from one line to the next. Any characters not

replaced on the line are unchanged.

17.

String Search and Replace

To search for a given string, type

S

followed by a space, the string, and carriage return. The search goes from the

current cursor position to the end of the screen. If the string is found, the

cursor is moved to just before that string. If the string is not found, the cursor

is not moved. In either case, the line now containing the cursor is typed.

The string search argument is saved. To search for the same string again,

type 'S' followed by a carriage return.

'n S' moves the cursor to line 'n' first. E.g. '0 S' (zero argument)

searches the entire screen. After a search string has been found, a convenient

way to replace it is to type

-R

followed by a space, the replacement string, and a carriage return. '-R' is par-

ticularly useful when the search and replacement strings have different lengths.

The current editor version does not save the replacement string.

Typing Multiple Lines

To enter more than one line without having to give a command for each line,

type

n NEW

followed immediately by a carriage return. Then type the lines. To terminate the

'NEW' entry mode, type two carriage returns in a row. Without the argument, 'NEW'

will start at the current cursor line.

'NEW' differs from the single-line replace, 'R', in several ways. 'R'

requires the replacement to be on the same line as the 'R'; 'NEW' requires a

carriage return, so the first replacement line must be on a line by itself

(anything after the 'NEW' on the same line will be lost). Also, 'NEW' will blank

out the remainder of any line it affects, if less than 64 characters are entered;

'R' preserves any part of the line that is not replaced.

18.

'NEW' is the normal way to enter new programs. Incidentally if a blank line

is desired within the range of the 'NEW', type two or more blanks on that line (as

the first blank is the delimiter of the 'NEW').

Moving Lines Around

n m TRADE

will swap lines 'n' and 'm'. Since no characters are lost in the trade, it is

possible to recover from errors.

n SPREAD

will push down all lines from 'n' through 14, and clear line n; the last line (15)

is lost. The argument 'n' is optional; if omitted, the line currently holding the

cursor will be assumed. 'SPREAD' is used to insert lines into the middle of a

screen.

Moving Screens

To copy one Forth screen into another (destroying any information which was

in the destination screen) type

n m SCREENMOVE

which copies from screen 'n' to 'm'. 'SCREENMOVE' is in the FORTH vocabulary, not

the EDITOR vocabulary, so it can be used any time, not only while editing. It is

loaded into memory with the editor, however, so it cannot be used until the editor

has been loaded.

Multiple Commands on One Line

Several commands can be on one line, except that any command which takes

the rest of the line as a string argument (e.g. 'I', 'R') must of course occur

last on the line. Sometimes an entire entry and editing session can be on one

line, including exit from the editor, e.g.

19.

31 EDIT 8 T 40 D L EX

This line edits screen 31, deletes the first 40 characters of line 8, lists

the screen, and exits. With proper care concerning vocabularies (see below), such

a line could be made into a command, used in loops, etc.

Extending the Editor

Occasionally you may want to add your own operations to the editor, e.g. to

define editor macros. If you change the editor by changing its source screens,

make sure you are backed up first. In case of error, it may not be possible to

load the editor again in order to correct the problem.

A safer way to extend the editor is to leave the original alone, but add

your own operations (either typed in or loaded from disk screens). To do this the

editor must first be loaded, but normally you would compile editor operations while

not editing a particular screen. Begin with 'EDITOR DEFINITIONS', and end with

'FORTH DEFINITIONS'. This way the new definitions will be put into the EDITOR

vocabulary.

Note that EDITOR redefines the word 'I' (for Insert), while the FORTH vocab-

ulary uses 'I' for the index of the 'DO' loop. Within 'EDITOR DEFINITIONS', 'I'

will compile as the EDITOR 'I' - resulting in bizarre errors if the 'DO' loop 'I'

was intended. Within the editor you can reach the FORTH 'I' by

FORTH I EDITOR

For example, here is a definition of an operation 'FLIP' which exchanges the

top and bottom halves of the screen being edited:

EDITOR DEFINITIONS

: FLIP 8 0 DO FORTH I EDITOR DUP 8 + TRADE LOOP ;

FORTH DEFINITIONS

A command summary appears on the following page. Copy it for a quick

reference at the terminal.

This editor takes less than 1500 bytes of memory. Total time to design,

code, and debug it was about 6 working days.

20.

Editor Command Summary

Entry and Exit

n EDIT Begin editing.

EX Terminate editing session.

SCRATCH Terminate, throw away changes.

E Begin new session where last left off.

Enter Data (Multiple Lines)

n NEW Accept starting at line n; null line terminates.

 Without argument – start at current line.

Move Cursor and List

n T Move cursor to line n, and type it.

 Without argument – type current line.

n M Move cursor n positions.

 Without argument – '1 M'.

L List the screen being edited.

S string Search from current cursor position.

 Without the string – use same one as last 'S'.

Insert, Delete, Replace

n I Insert at beginning of line n, move rest over.

 Without argument – insert at cursor.

n D Delete n characters, moving rest of line.

 Without argument – '1 D'.

n R Replace at beginning of line n.

 Without argument – at cursor position.

-R string Use after 'S'; replace found string.

 Without the string – delete found string.

Moving Lines

n m TRADE Swap lines n and m.

n SPREAD Move all lines n and below down one; blank n.

 Without argument – assume cursor line.

Moving Screens

n m SCREENMOVE Move screen n to m, destroying m. May be used while not

editing any screen.

21.

22.

V. Assembler

FORTH assemblers are usually used to code short, critical routines, sequences

for device handlers, etc.; generally most of the program stays in higher-level

FORTH. The code routines have FORTH names and behave exactly like other FORTH

operations (taking their arguments from the stack, etc.), except that they run at

full machine speed. Often the code routines of a package are also written in

higher-level FORTH, so that the package can be transported to different CPUs, and

later optimized with native code routines as desired.

Code routines created by this assembler are ready to execute immediately when

entered, with no wait for separate assembly and linkage steps. They execute at

full machine speed of course. The conventional op codes are provided, though it is

customary in FORTH assemblers to end op code names with commas; the commas are just

part of the name, not punctuation. This particular assembler is optimized for user

convenience; it takes 2.6K bytes of memory, more than most FORTH assemblers. Nor-

mally the assembler is loaded by the '1 LOAD' command, and unless memory is tight,

it can remain in memory throughout the session.

This as other FORTH assemblers accepts source code in postfix; mode symbols

follow operands, and op codes come last. In this assembler, arguments of two-

address instructions are in the conventional order, however.

23.

The examples reproduced below just begin to illustrate the capabilities of

this assembler:

SCR # 17
 0 (ASSEMBLER - EXAMPLES)
 1 CODE TEST1 33006 # 33000 MOV, NEXT, C;
 2 CODE TEST2 555 # 33000 () MOV, NEXT, C;
 3 CODE TESTDUP S () S -) MOV, NEXT, C;
 4 CODE TEST0 R0 S -) MOV, NEXT, C;
 5 CODE TESTBYTE 33006 R1 MOVB, R1 S -) MOV, NEXT, C;
 6 CODE TEST3 33000 # R1 MOV, 444 # 20 R1 I) MOV, NEXT, C;
 7 CODE TEST-DUP S () TST, NE IF, S () S -) MOV, ENDIF, NEXT, C;
 8 CODE TESTLP1 15 # R1 MOV, BEGIN, R1 DEC, GT WHILE, R1 S -) MOV,
 9 REPEAT, NEXT, C;
 10 CODE TESTLP2 15 # R1 MOV, BEGIN, R1 S -) MOV, R1 DEC,
 11 EQ UNTIL, NEXT, C;
 12 : TESTVARIABLE CONSTANT ;CODE W S -) MOV, NEXT, C;
 13
 14
 15
 OK

Line 1 creates an operation 'TEST1'; when 'TEST1' is executed, it moves lit-

eral 33006 (octal) to octal address 33000. (The address could have been a label or

constant, or been computed.) 'NEXT,' is a macro which assembles the two-instruc-

tion inner interpreter which resumes Forth execution. (A 'TRAP ERROR' message when

a word defined by the assembler is first executed often means that 'NEXT,' was

forgotten.)

'CODE' begins the definition; like ':' which begins higher-level definitions,

it takes the name of the following word in the input stream, and enters it in the

dictionary. 'C;' terminates the definition. Naturally 'CODE' and 'C;' should

always be used as a pair. If 'C;' is forgotten, the definition will not be exe-

cutable - it will be treated as undefined, not found by a search of the dictionary

- although it will still take space in the dictionary, and it will appear in a

'VLIST'.

'CODE' sets the 'CONTEXT' vocabulary to ASSEMBLER, so that the op codes, mode

symbols, etc. will be recognized. (They are unknown outside of a code definition.)

'C;' sets the vocabulary back to FORTH. 'CODE' also sets the number base to octal,

but it saves the base previously in effect; 'C;' restores that base. 'CODE' also

notes the stack depth upon entry; 'C;' tests to see if the depth is the same upon

leaving the definition. If not, a message 'ERROR, STACK DEPTH CHANGED' is given.

This usually means that a mode symbol or operand was forgotten. (Of course when

24.

code routines execute, they are allowed to change the stack depth; the test is at

assembly time.)

Unlike colon definitions, which set the system into a special compile state,

'CODE' definitions leave it in regular Forth execution. Therefore the whole FORTH

language is available for address arithmetic, macros, labels, etc.

In line #2, 'TEST2' is defined to move literal '555' into indirect address

33000. The symbol '()' was chosen for indirection instead of '@', which is used

for Fetch in the FORTH vocabulary.

'TESTDUP' (line 3) is the same as 'DUP' - it moves from the stack pointer

indirect to the stack pointer autodecrement. Note the symbol 'S', which refers

to the FORTH stack. This assembler also has a symbol 'SP' to refer to the machine

stack; in this implementation, they are different.

'TEST0' pushes R0 onto the stack, showing how FORTH can get access to regis-

ter contents.

'TESTBYTE' (line 5) moves the byte at address 33006 to the stack. It goes by

way of R1, a register available as a temporary. The byte cannot be moved directly

into the FORTH stack, as the 'MOVB' instruction would autodecrement by 1 instead of

2, destroying the stack and crashing FORTH.

Registers R0, R1, and R2 are available for CODE routines to use without

restoring. R4 is the FORTH instruction pointer and R5 is the FORTH stack; the

machine stack is the FORTH return stack. R3 points to FORTH's "user" area.

'TEST3' illustrates an indexed address - literal 444 is moved into 20 indexed

by R1 - or address 33020 octal in this case.

'TEST-DUP' introduces a code-level structured conditional. (This operation

is the same as '-DUP', which duplicates the top of the stack if it is non-zero.)

First, 'S () TST,' tests the top of the stack non-destructively. Then 'NE IF,'

sets up a branch instruction which executes the code between 'IF,' and 'ENDIF,'

only if the 'NE' condition code is true - i.e. it does branch around if 'NE' is

false. 'S () S -) MOV,' works as in the 'TESTDUP' example, line 3 above. Note

that 'IF,' is different from the higher-level analogous operation 'IF'. In case

you forget the comma, an error message will be given, since 'IF' can only be used

inside a colon definition.

25.

The following condition tests may be used with 'IF,'. These same tests may

also be used with the 'WHILE,' and 'UNTIL,' looping structures described below.

EQ NE MI PL VS VC CS CC

LT GE LE GT LOS HI LO HIS

Note that there are no commas in the names. The convention is to use commas to end

the names of instructions which actually place code in the dictionary ('BEGIN,' -

described below - is an exception).

Incidentally, the complete set of mode symbols is:

)+ autoincrement

-) autodecrement

I) indexed

@)+ autoincrement deferred

@-) autodecrement deferred

@I) indexed deferred

immediate

@# absolute

() either register deferred or relative deferred

'()' tests whether its argument is 0-7, in which case it assumes register

deferred; otherwise it is relative deferred.

No mode symbol at all defaults to register mode if the argument is 0-7,

relative otherwise. To address memory locations 0-7, the instruction would have to

be specially created in octal. (Also, a '-1' (177777) address may have to be

specially created, as the assembler uses '-1' as a flag during the handling of the

mode default.)

Lines 8-9, 'TESTLP1', create a 'BEGIN,...WHILE,...REPEAT,' loop in code.

First, octal 15 is moved to R1. Within the loop, R1 is decremented, and while the

result is greater than zero, the loop continues. 'R1 S -) MOV,' pushes R1 onto the

stack; this is done so that we can later check that the loop worked right.

Similarly, 'TESTLP2' creates a 'BEGIN,...UNTIL,' loop in code. These loop

structures can be nested.

26.

These structured conditionals use the 'BR' instructions, and give an error

message in case of attempt to branch outside the allowable range of those instruc-

tions (this shouldn't happen often, because FORTH code definitions are customarily

short). The assembler could be modified to substitute 'JMP,' in that case.

Line 12 creates a new data type 'TESTVARIABLE' (it's the same as 'VARIABLE').

The word ';CODE' is the machine-language equivalent of the pair '(BUILDS...DOES)'.

'W', which is another name for 'R1', is a register used as a temporary by the

system. When 'TESTVARIABLE' is executed, it will grab the next word in the input

stream, and make a dictionary entry for it (this is done by 'CONSTANT'). ';CODE'

then changes that dictionary entry so that when the new word gets executed,

'W S -) MOV,' will execute (instead of the usual 'code routine' associated with the

data type CONSTANT. Full discussion of ';CODE' is beyond the scope of this User's

Guide, but for comparison, see the definition of 'VARIABLE' in FORTH.MAC.

The previous examples have used numeric literals to represent addresses.

Naturally, FORTH constants could be used just as well; the assembler doesn't care

how the address gets on the stack. FORTH variables can be used as labels, as

illustrated below. The label must be defined before it is used, so these labels

can only refer backwards. Usually this isn't a problem because the structured

conditionals take care of most of the branching, and FORTH constants, variables,

or allocation algorithms provide the addresses of data areas. If a non-structured

forward branch were required, it would have to be patched.

The following example uses variable 'XX' as a label. The variable is created

outside of a code definition (else the dictionary entry, including the name, would

be in the line of code). The 'HERE XX !' places the current dictionary address

into 'XX'; it generates no code, but it saves the address where 'TESTSUB', a sub-

routine, begins. The subroutine moves '333' to the stack (so we can check that it

worked), then it does 'PC RTS,'. No 'NEXT,' is needed, because this subroutine

returns through the RTS instruction instead of continuing with FORTH execution.

'TESTCALL' uses 'XX @' to get the address for the 'JSR,'. A number, FORTH

constant, or computed address would have been equivalent.

27.

0 VARIABLE XX
 OK
CODE TESTSUB HERE XX ! 333 # S -) MOV, PC RTS, C;
 OK
CODE TESTCALL PC XX @ JSR, NEXT, C;
 OK
TESTCALL .
219 OK
219 OCTAL .
333 OK
DECIMAL
 OK

Note - Many FORTH systems only remember the first three characters and the

length of operation names; therefore 'TEST1' and 'TEST2' used in the above examples

would not be distinguished, so this naming scheme could not be used. This and the

other Forth Interest Group systems distinguish the full name, up to 31 characters.

Long names take more memory than short ones, but the difference is slight because

the name is only remembered once (when defined), regardless of how often it is

used.

This system does permit the user to cut off names at three characters or some

other maximum length if desired, by changing the value of the system-defined

variable 'WIDTH', which is normally 31. This feature is useful if memory is very

tight, or to check that programs will run on other FORTH systems which do not

remember the full names.

28.

VI. Strings

The "Sample Session" chapter includes examples of use of the string package.

This chapter gives an overview and a glossary of the string operations available.

Strings are kept on a separate string stack, or in string variables in mem-

ory. In either case, the string is represented as a length word, followed by the

string of characters. The length word is on a word boundary, and if the number of

characters is odd, an extra byte is left.

The usual Forth convention is that operations should destroy their arguments

on the stack. Some of the string operations, however ('$LEN', '$SEG1' for example)

do not destroy their string-stack arguments; others (e.g. '$.') do.

In this as in most Forth systems, the dictionary grows upward in memory,

while the stack (data stack) grows downward. In this system, the string stack is

located on a "platform" over the data stack; it also grows down toward the

dictionary. The following diagram shows a simplified memory map:

I/O BUFFERS

29.

STACK

STRING STACK

300 BYTES (MAY
BE CHANGED BY USER)

DICTIONARY

This layout was chosen because in practice very few Forth programs, even the larg-

est, ever use a stack depth of over 50 words (recursive programs are an exception

of course). As distributed, this system allows a depth of 150 words (300 bytes) in

the data stack, before the string stack begins. The user can increase this size by

changing the number '300' in the definition of 'STACKSIZE' (screen 19 line #2); no

reassembly of FORTH.MAC is required. And a program could use over 150 words of

stack without increasing 'STACKSIZE', as long as it did not use strings at the same

time as the stack depth was over 150.

This arrangement allows the string stack to use almost all of available mem-

ory if required; and yet when it isn't used, it doesn't take any memory.

These are the string operations of most interest to the user:

" Introduce a string literal. The quote must be fol-
lowed by a blank, then by the string, followed by a
terminating quote. The string literal must all be
on the same line. This operation cannot be used to
enter a null string.

If executing, the string literal is immediately
placed on the string stack. If compiling, it is
included in the dictionary definition, and placed on
the string stack when that part of the definition is
executed. This is analogous to the handling of
numeric literals (ordinary numbers) in Forth.

$. Print the top string on the stack, and destroy it.

$DUP Duplicate the top string.

$DROP Drop string.

$SWAP Swap settings.

$OVER Over – copy second string into string stack.

$@ Fetch the string from memory (address on data stack)
and put it on the string stack. This string in mem-
ory must start with a length word.

$! Store from the string stack into memory.

$@TEXT Like '$@', but takes only the string of characters
from memory, not the length word. This operation
takes two arguments on the data stack, the count
(number of characters) on top, and the memory address
where the text string begins. Note that these are
the same arguments expected by the Forth word 'TYPE'.

$DIM Creates a string variable of the given length; e.g.
'80 $DIM X' creates the Forth word 'X' which, when

30.

executed, returns the address of an area for an 80-
character string. The string variable is not initial-
ized. This implementation does not store the length
in the area, so operations that move strings there
cannot automatically guard against too long a string
being moved in (which would usually crash Forth).

$VARIABLE Does '$DIM' for the string on top of the string
stack, and initializes. It drops the string from
the stack.

$LEN Returns length of top string – doesn't drop it.

$SECOND Returns address of length word of second string.

$SEG Segment. Takes beginning and ending index of the
segment (1-origin) as arguments. Does not destroy
its string argument. Returns the segment string to
the string stack.

$STR Creates string from the numerical value on the data
stack.

$VAL Converts top string to its numerical value. (Note –
this implementation accepts positive numbers only,
and no leading blanks.) Stops conversion at first
non-digit. Drops string.

$< Compares top two strings (and drops them). Returns
boolean True if second string is less, False other-
wise.

$= Same, for equal.

$> Same, for greater.

$+ Concatenate top two strings.

$NULL Enter a null string on the string stack.

$CLEAR Clear the string stack.

Two enhancements which didn't make this release in time are a generalized

'$VAL' (allowing minus signs and/or leading blanks) and a string search operation.

(The latter should probably be written to allow a code option - e.g. written to use

an operation which might be called 'CCOMP', like 'CMOVE', only compare instead of

move. Then 'CCOMP' could be available in higher-level Forth for transportability,

and easily written in code for various computers, for speed.) These enhancements

when made will not affect any programs which are already running on this system.

The string package currently takes less than 1200 bytes of object code.

31.

32.

VII. Operating System Calls

A. RT-11

Screen 28 shows an RT-11 system call to get the date. The Forth assembler

sets up the same EMT (with its argument in R0) as the '.DATE' macro would in

Macro-11. (Naturally, '.DATE' is not used here.)

SCR # 28
 0 (RT-11 SYSTEM-CALL EXAMPLE - DATE)
 1 CODE DATE 12 400 * # R0 MOV, 374 EMT, R0 S -) MOV, NEXT, C;
 2 : YEAR (-> N) DATE 31 AND 72 + ;
 3 : DAY (-> N) DATE 32 / 31 AND ;
 4 : MONTH (-> N) DATE 1024 / 15 AND ;
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

As described in the '.DATE' documentation in RT-11 Advanced Programmer's

Guide, R0 must have octal 12 in the high-order byte, zero in the low-order, when

EMT 374 is executed. The Forth assembler code '12 400 * # R0 MOV,' could have been

written '6000 # R0 MOV,', but the former is more explanatory, and the extra multi-

plication is only at assembly time. The call returns the date in R0; the right-

most 5 bits are for year (the year minus 72), next 5 bits for day, and next 4 for

month. The 'YEAR', 'DAY', and 'MONTH' operations break out these bits, and 'YEAR'

adds 72. If 'YEAR' returns 72, it probably means that the operator has not entered

a date.

33.

B. RSX-11M

The RSX call for the date (and time) is described in the Sample Session chap-

ter. Here the address of an 8-word buffer to receive the information is pushed

onto the PDP-11 stack ('SP' in Forth assembler is different from the Forth stack

'S'). Then a word containing the code for the call and the size of the block on

the stack (2 words) is pushed. Then an EMT 377 is executed. See documentation of

'$GTIM$' in RSX-11M Executive Reference Manual.

SCR # 29
 0 (RSX-11M SYSTEM-CALL EXAMPLE - DATE)
 1 DECIMAL
 2 0 VARIABLE TBUFF 14 ALLOT
 3 CODE TIME TBUFF # SP -) MOV, 2 400 * 75 + # SP -) MOV,
 4 377 EMT, NEXT, C;
 5 : YEAR (-> N) TIME TBUFF @ ;
 6 : MONTH (-> N) TIME TBUFF 2+ @ ;
 7 : DAY (-> N) TIME TBUFF 4 + @ ;
 8 : HOUR (-> N) TIME TBUFF 6 + @ ;
 9 : MINUTE (-> N) TIME TBUFF 8 + @ ;
 10 : SECOND (-> N) TIME TBUFF 10 + @ ;
 11 : TICK (-> N) TIME TBUFF 12 + @ ;
 12 : TICKS/SECOND (-> N) TIME TBUFF 14 + @ ;
 13
 14
 15

Even though the information is returned very differently than in RT-11,

the end user, who sees only 'YEAR', 'MONTH', 'DAY', etc., uses them identically.

34.

Screen 30 (below) defines a system call to read a line from the terminal

(using LUN 4, which has already been assigned in FORTH.MAC). Here 'PUSH' is

defined to avoid repetitive writing while pushing the required 12 words onto the

stack; note the excursion into the ASSEMBLER vocabulary, necessary since 'SP', etc.

are here being used outside of a 'CODE' definition ('CODE' automatically sets the

ASSEMBLER vocabulary). An 80-byte buffer and an I/O status block are created;

there are more graceful ways to create such buffers, but using 'ALLOT' to extend

the two bytes already available in the variable will do. If re-entrancy were

desired, these buffers could be assigned elsewhere in memory.

SCR # 30
 0 (RSX-11M SYSTEM-CALL EXAMPLE - TERMINAL I/O)
 1
 2 : PUSH ASSEMBLER SP -) MOV, FORTH ;
 3 0 VARIABLE INBUF 78 ALLOT
 4 0 VARIABLE IOSTAT 2 ALLOT
 5 CODE INPUT 0 # PUSH 0 # PUSH 0 # PUSH 0 # PUSH
 6 120 # PUSH INBUF # PUSH 0 # PUSH IOSTAT # PUSH
 7 4 # PUSH 4 # PUSH 10400 # PUSH 6003 # PUSH
 8 377 EMT, NEXT, C;
 9
 10
 11
 12
 13
 14
 15

Forth can create FDBs [RSX-11M File Descriptor Blocks], etc. for the I/O

calls. And Forth's interactive access makes learning and using the system calls

faster and more pleasant, as new tests can be run immediately, and Forth eliminates

the need for using a separate debugger to see error returns, etc.

35.

36.

VIII. Linkage to Other Languages (RSX)

Forth operations can call subroutines written in other languages, giving

access to features not yet implemented in this system (e.g. floating point), and

more importantly allowing use of previously written packages, e.g. for statistical

analysis or database management. After the calling sequences are defined, the

resulting operations behave like any other Forth operations, allowing interactive

access to packages not normally used interactively.

This chapter is for systems programmers who are setting up the linkage

operations. Application programmers who use the operations don't need to know

these details.

At the time of this release, use of this linkage has only begun, and it has

only been tested under RSX-11M.

(RT-11 should be similar, as the subroutine linkage conventions are the

same.) The example presented uses a Fortran subroutine for writing RSX-compatible

sequential files from Forth. Any language which can be called from assembly should

be callable from Forth.

The RSX-11M (also RT-11) linkage conventions are explained in IAS/RSX Fortran

User's Guide, Section 2.4; most other PDP-11 operating systems also use the same.

Briefly, the calling program points R5 to a word in memory which contains the

number of arguments being passed. That word is followed by the addresses of the

arguments. Then the calling program jumps to the entry point of the subroutine,

using a JSR.

Forth could set up this calling sequence in various ways; we chose to create

the argument list dynamically on the Forth stack. This implementation uses R5 as

the Forth stack pointer. PDP-11 stacks grow down; so the Forth calling primitive

'ACALL' pushes the arguments onto the Forth stack in reverse order, then pushes the

number of arguments, copies the Forth stack pointer into R5 (unnecessary in this

implementation) making R5 point to the argument list, which has been created on the

stack, and then does the JSR. After the call, 'ACALL' cleans up the stack by drop-

ping the argument list. Also, 'ACALL' saves and restores R3, R4, and R5, which are

37.

important to Forth and might not be restored by the subroutine. Naturally the end

user doesn't have to worry about these details.

SCR # 26
 0 (FORTRAN LINKAGE, RSX)
 1 CODE ACALL (ARGS... N ADDR -> . CALL FORTRAN, ETC.)
 2 S)+ R2 MOV, (SAVE ENTRY ADDRESS IN REGISTER)
 3 R3 RP -) MOV, R4 RP -) MOV, R5 RP -) MOV, (SAVE R3,R4,R5)
 4 S R5 MOV, (THE STACK WILL BE THE ARG. LIST)
 5 PC R2 () JSR, (LINK THROUGH R2)
 6 RP)+ R5 MOV, RP)+ R4 MOV, RP)+ R3 MOV, (RESTR R3,R4,R5)
 7 S)+ R2 MOV, R2 R2 ADD, R2 S ADD, (DROP THE ARGS)
 8 NEXT, C;
 9
 10 (THIS IS AN EXAMPLE - WRITE LINES ON AN RSX FILE)
 11 0 VARIABLE NFORT
 12 : FILECALL 2 VLINK @ ACALL ;
 13 : OPEN 1 NFORT ! 0 NFORT FILECALL ;
 14 : CLOSE 3 NFORT ! 0 NFORT FILECALL ;
 15 : WRITE (ADDR ->. WRITE A LINE) 2 NFORT ! NFORT FILECALL ;

Screen 26 also contains a simple example of a call to a Fortran subroutine

which can open, close, or write a file. The subroutine, reproduced below, takes

two arguments: a parameter ('1', '2', or '3') telling whether to open, write, or

close, and the address where writing begins. Naturally the end user of the file

routines won't need to be bothered with the arbitrary parameter values. In this

example, the number of characters per line (80) is fixed in the Fortran subroutine;

Forth must set up a line of this length.

The end user need only see the operations 'OPEN', 'CLOSE', and 'WRITE'.

'WRITE' takes one argument, the memory address to start writing from; 'OPEN' and

'CLOSE' take no arguments. (A 'READ' operation could have been added of course.)

'FILECALL' simply supplies the number of arguments which will be received

by the Fortran program (2 arguments), and the entry-point address ('LINKAGE @',

explained below), and then performs the 'ACALL'. The variable 'NFORT' is used

because the argument list sent to Fortran must contain addresses of the arguments,

not the actual values; 'OPEN', 'CLOSE', and 'WRITE' stuff the proper value into

'NFORT', and then provide its address to 'FILECALL'. 'OPEN' and 'CLOSE' supply a

dummy buffer address, '0'; 'WRITE' supplies the address which was given to it on

the stack.

38.

Linking the Routines

Before the calls can be executed, the Fortran (or other language) routine

must be linked with Forth into a task image. This linking is needed only when the

subroutines are changed or added to; program development within Forth is still

immediate, without need to wait for a link step, and the use of Fortran, etc. is

normally transparent to the applications Forth programmer, once the linkage

operations have been written.

To avoid reassembly of FORTH.MAC every time a different set of subroutines is

linked, FORTH.MAC links indirectly through a single global symbol, VLINK. VLINK is

the address of a vector of entry addresses of the subroutines being used. The

Forth operation 'VLINK' returns the address of this vector. Therefore 'VLINK @'

gets the address of the first entry point, 'VLINK 2 + @' gets the second subrou-

tine's entry address, etc. The Forth operation 'VLINK' does not exist when the

'LINKS' symbol in FORTH.MAC is commented out.

At least under RSX-11M, a special Forth object program must be assembled if

any linkage is to be used. This is because Forth normally uses a global symbol to

link to the subroutine(s), and if there weren't any routines, a confusing warning

message would be produced by the linker. Also, Fortran I/O has difficulty when

called from a Macro-11 main program. So when Fortran I/O is to be used, a dummy

Fortran main program calls Forth, which never returns to the dummy. (This dummy

program calls 'GFORTH', a global symbol defined at the FORTH.MAC entry point.)

Then Forth can call the Fortran I/O subroutines as needed. This procedure requires

a change to FORTH.MAC so that an object program is assembled with no entry address.

To make these changes to FORTH.MAC, (1) remove the semicolon which comments

out the definition of the 'LINKS' symbol near the beginning of FORTH.MAC,

(2) change the last line of FORTH.MAC, from '.END ORIGIN' to '.END', and

(3) assemble to get a FORTH.OBJ suitable for linking. The dummy Fortran program is

CALL GFORTH

END

and the link vector module is

VLINK:: .WORD OUT

 .END

39.

In this example, we are linking to only one Fortran subroutine, named 'OUT'.

This subroutine is

 SUBROUTINE OUT(N,L)
C OUTPUT RSX-COMPATIBLE FILES FROM FORTH
 DIMENSION L(40)
 IF(N .NE. 1) GOTO 2
 CALL ASSIGN (1,'OUT.DAT')
 RETURN
2 IF(N .NE. 2) GOTO 3
 WRITE(1,101)L
101 FORMAT(' ',40A2)
 RETURN
3 IF(N .NE. 3) GOTO 4
 CALL CLOSE(1)
 RETURN
4 WRITE(4,102)N
102 FORMAT(' ERROR, BAD ARG TO FORTRAN SUBROUTINE', I7)
 RETURN
 END

40.

The following session uses TECO to edit FORTH.MAC for RSX assembly and to

allow linkage, assembles the new FORTH.MAC and the link vector module VLINK.MAC,

and compiles the Fortran dummy main program DUMMY.FTN and the Fortran OUT.FTN.

Then it links these modules, runs Forth, loads the assembler, etc. and loads the

linkage example in Screen 26:

>TEC FORTH.MAC
*^^^EV$$
^.TITLE F.I.G.
*S;R$$
;R^SX11=1 ; COMMENTED OUT UNLESS RSX11M
*-L$$
^RT11=1 ; COMMENTED OUT UNLESS RT-11
*I;$$
;^RT11=1 ; COMMENTED OUT UNLESS RT-11
*L$$
^;RSX11=1 ; COMMENTED OUT UNLESS RSX11M
*D$$
^RSX11=1 ; COMMENTED OUT UNLESS RSX11M
*2L$$
^;LINKS=1 ; COMMENTED OUT UNLESS SUBROUTINE LINKAGE FROM
*D$$
^LINKS=1 ; COMMENTED OUT UNLESS SUBROUTINE LINKAGE FROM
*NHIMEM:$$
HIMEM:^
*2L$$
^ .END ORIGIN
*KI .END
$$
^*EX$$

>MAC FORTH=FORTH
>MAC VLINK=VLINK
>FOR DUMMY=DUMMY
>FOR OUT=OUT
>FTB FORTH=DUMMY,FORTH,VLINK,OUT
>RUN FORTH
FIG-FORTH V 1.3
1 LOAD

LOADING EDITOR... R ISN'T UNIQUE I ISN'T UNIQUE
LOADING ASSEMBLER... R0 ISN'T UNIQUE # ISN'T UNIQUE
LOADING STRING PACKAGE...
BYE ISN'T UNIQUE
 OK
26 LOAD
 OK

41.

Now we can use 'OPEN', 'WRITE', and 'CLOSE' to define an operation 'FLIST',

which lists a Forth screen to an RSX-compatible file (named OUT.DAT – see the

Fortran listing above).

: IOBUF <BUILDS ALLOT DOES> ;
 OK
80 IOBUF OUTBUF
 OK
: FLIST (SCREEN ->) OUTBUF 80 BLANKS OUTBUF WRITE (BLANK LINE)
 16 0 DO DUP BLOCK I 64 * + OUTBUF 64 CMOVE OUTBUF WRITE LOOP DROP ;
 OK
: OUT30 OPEN 31 1 DO I FLIST LOOP CLOSE ;
 OK
OUT30
 OK

Now the RSX file OUT.DAT contains Forth screens 1-30.

The operation 'OUT30' writes the screens. Incidentally the data type defined

by 'IOBUF' may also be useful elsewhere. 'IOBUF' creates a buffer in the diction-

ary, but it could have been defined to accept an address and allocate buffers

wherever desired in memory.

In case of a trap error in Fortran, RSX cannot return control to Forth, so

the job is aborted. In that case, the file FORTH.DAT will probably need to be

unlocked.

Various shortcuts for linking subroutines are sometimes possible; FORTH.MAC

may not need to be changed and reassembled for linking. The procedure described

here is for the general case.

42.

IX. Bring-Up Options

Four pages of the program listing (reproduced below) describe options

available through conditional assembly of FORTH.MAC. These options control:

(a) Stand-alone, RT-11, or RSX-11M assembly.

(b) Whether to use the EIS instructions (hardware

multiply/divide, etc.)

(c) Whether to produce an object module for linking to

subroutines in other languages (see Chapter VIII).

FORTH.MAC as distributed is edited for RT-11 assembly without EIS and without

linkage.

If you are using an old version of RT-11 (version 2), note special

instructions.

43.

 1 .TITLE F.I.G.
 2 ; **
 3 ;
 4 ; PDP-11 FORTH INTRODUCTION PDP-11 FORTH
 5 ;
 6 ; **
 7 ;
 8 ;
 9 ;
 10 ; PDP-11 FORTH RT-11, RSX-11M, AND STAND-ALONE JANUARY 1980
 11 ;
 12 ;
 13 ;
 14 ; DEVELOPED BY THE
 15 ; FORTH INTEREST GROUP / FORTH IMPLEMENTATION TEAM
 16 ; P.O. BOX 1105
 17 ; SAN CARLOS, CA. 94070
 18 ;
 19 ;
 20 ; IMPLEMENTED BY
 21 ; JOHN S. JAMES
 22 ; P.O. BOX 348
 23 ; BERKELEY, CA. 94701
 24 ;
 25 ;
 26 ; THIS SYSTEM IS IN THE PUBLIC DOMAIN AND CAN BE USED
 27 ; WITHOUT RESTRICTION. PLEASE CREDIT THE FORTH INTEREST
 28 ; GROUP IF YOU REPUBLISH SUBSTANTIAL PORTIONS.
 29 ;
 30 ;
 31 ; THE FORTH INTEREST GROUP / FORTH IMPLEMENTATION TEAM
 32 ; ALSO HAS DEVELOPED NEARLY IDENTICAL VERSIONS OF THIS
 33 ; SYSTEM FOR THE
 34 ; 8080
 35 ; 6800
 36 ; 6502
 37 ; 9900
 38 ; PACE
 39 ;
 40 ;
 41 ; FOR MORE INFORMATION, WRITE:
 42 ;
 43 ; JOHN S. JAMES
 44 ; P.O. BOX 348
 45 ; BERKELEY, CA. 94701
 46 ;
 47 ; OR

44.

 48 ;
 49 ; FORTH INTEREST GROUP
 50 ; P.O. BOX 1105
 51 ; SAN CARLOS, CA. 94070
 52 ;
 53 ;
 54 ; 'PDP' AND 'RSX' ARE TRADEMARKS OF DIGITAL EQUIPMENT CORPORATION.
 55 .PAGE
 56 ; THIS FORTH SYSTEM HAS
 57 ; - FULL LENGTH NAMES
 58 ; - EXTENSIVE COMPILE-TIME CHECKS AND ERROR MESSAGES
 59 ; - DOUBLE INTEGER I/O
 60 ; - A FORTH ASSEMBLER, PERMITTING STRUCTURED, INTERACTIVE
 61 ; DEVELOPMENT OF DEVICE HANDLERS, SPEED-CRITICAL
 62 ; ROUTINES, AND LINKAGE TO OPERATING SYSTEMS OR TO
 63 ; SUBROUTINE PACKAGES WRITTEN IN OTHER LANGUAGES.
 64 ; - STRING-HANDLING ROUTINES
 65 ; - A STRING-SEARCH EDITOR
 66 ; - LINKED VOCABULARIES
 67 ; - HOOKS FOR MULTITASKING/MULTIUSER (CURRENTLY SINGLE TASK)
 68 ; - AND AS CURRENTLY CONFIGURED IT RUNS IN A 24K BYTE
 69 ; TASK IMAGE (THIS INCLUDES BUFFERS, OPERATING-SYSTEM
 70 ; AREA, AND ROOM FOR SUBSTANTIAL ADDITIONAL FORTH
 71 ; PROGRAMMING) ON ANY PDP-11 OR LSI-11 CPU, WITH OR
 72 ; WITHOUT HARDWARE MULTIPLY/DIVIDE. THIS DISKETTE
 73 ; WILL BOOT AND RUN STAND-ALONE; ALSO IT CONTAINS A
 74 ; SOURCE PROGRAM WHICH CAN BE ASSEMBLED TO RUN
 75 ; UNDER RT-11, RSX-11M, OR STAND-ALONE. THIS SYSTEM
 76 ; CAN BE MODIFIED TO INTERFACE WITH ANY OTHER OPERATING
 77 ; SYSTEM WHICH SUPPORTS READ AND WRITE A CHARACTER,
 78 ; DETECT A CHARACTER (OPTIONAL), AND READ AND WRITE
 79 ; A DISK BLOCK.
 80 ;
 81 ;
 82 ; IT IS ALIGNED WITH THE 1978 STANDARD OF THE FORTH INTERNATIONAL
 83 ; STANDARDS TEAM.
 84 ;
 85 ;

45.

 86 ;
 87 ; RECOMMENDED DOCUMENTATION:
 88 ; - A FORTH LANGUAGE MANUAL. WE PARTICULARLY RECOMMEND EITHER
 89 ; (A) 'USING FORTH', BY FORTH, INC.
 90 ; OR
 91 ; (B) 'A FORTH PRIMER', BY W. RICHARD STEVENS, KITT
 92 ; PEAK NATIONAL OBSERVATORY.
 93 ; EITHER IS AVAILABLE THROUGH THE FORTH INTEREST GROUP,
 94 ; P.O. BOX 1105, SAN CARLOS, CA. 94070.
 95 ; - PDP-11 FORTH USER'S GUIDE, AVAILABLE FROM JOHN S. JAMES,
 96 ; ADDRESS ABOVE.
 97 ; - FORTH REFERENCE CARD FOR THE FORTH IMPLEMENTATION TEAM
 98 ; COMMON MODEL, AVAILABLE FROM FIG.
 99 ; - 'FIG-FORTH INSTALLATION MANUAL', ALSO FROM FIG.
100 ;
101 ;
102 ;
103 ; ACKNOWLEDGMENTS:
104 ; THIS FORTH SYSTEM (IN 'FORTH.MAC') IS A GROUP PRODUCT
105 ; OF THE FORTH IMPLEMENTATION TEAM OF THE FORTH INTEREST
106 ; GROUP (P.O. BOX 1105, SAN CARLOS CA. 94070). THE IMPLEMENTER
107 ; IS RESPONSIBLE FOR THIS PDP-11 VERSION OF THE MODEL, AND FOR
108 ; THE SOFTWARE ON SCREENS IN 'FORTH.DAT'. ALTHOUGH THE LATTER
109 ; IS NOT AN OFFICIAL RELEASE OF THE F.I.G., THE CONTRIBUTIONS
110 ; FROM MEMBERS OF THE GROUP ARE TOO NUMEROUS TO CITE
111 ; INDIVIDUALLY.
112 ; IN ADDITION WE APPRECIATE THE PDP-11 CODING
113 ; IMPROVEMENTS SUGGESTED BY STUART R. DOLE, DOLE & FARMER,
114 ; PO BOX 142, PETALUMA, CA. 94952; BY PAUL EDELSTEIN;
115 ; BY RICK STEVENS OF KITT PEAK; AND OTHERS.
116 .PAGE

46.

117 ; **
118 ;
119 ; BRINGING UP THE SYSTEM
120 ;
121 ; **
122 ;
123 ;
124 ;
125 ; TO RUN STAND-ALONE:
126 ; - BOOT THE DISKETTE LIKE ANY OTHER SYSTEM DISK, FROM DX0.
127 ; FORTH SHOULD COME UP AND TYPE 'FIG FORTH' AND THE VERSION
128 ; NUMBER. TEST AS DESCRIBED FOR RT-11 BELOW.
129 ; - MAKE A COPY OF THE DISK; THIS STAND-ALONE SYSTEM DOES NOT
130 ; PROTECT AGAINST ACCIDENTALLY OVERWRITING THE SYSTEM OR THE
131 ; SOURCE PROGRAMS. TO MAKE AN EXACT COPY OF THE ENTIRE DISK,
132 ; 1. PUT A BLANK DISK INTO THE SECOND DRIVE (DX1). FOR
133 ; SAFETY, SET THE WRITE-PROTECT SWITCH ON THE DRIVE
134 ; WHICH CONTAINS THE ORIGINAL SYSTEM DISK.
135 ; 2. TYPE '38 LOAD', AND CARRIAGE RETURN. THE SYSTEM SHOULD
136 ; RESPOND 'OK'. THEN TYPE 'COPY' AND RETURN. EACH OF
137 ; THE 77 TRACKS WILL BE READ FROM DX0 AND WRITTEN ON DX1.
138 ; - NOTE THE LAYOUT OF THE DISKETTE. IT IS SET UP TO BOOT AND
139 ; RUN STAND-ALONE, BUT IT ALSO CONTAINS AN RT-11 DIRECTORY,
140 ; AND A MACRO-11 SOURCE PROGRAM 'FORTH.MAC' (WHICH PRODUCED
141 ; THIS LISTING). THIS ALLOWS THE SAME DISK TO BE BOOTED
142 ; AND RUN, OR TO PROVIDE SOURCE FOR MODIFICATION AND RE-ASSEMBLY.
143 ; AS PROVIDED, THE FILE 'FORTH.DAT' CONTAINS FORTH SCREENS
144 ; 1-70. YOU CAN USE LOCATIONS BEYOND 70, BUT THESE WILL
145 ; OVERWRITE THE 'FORTH.MAC' SOURCE PROGRAM. STAND-ALONE USERS
146 ; MAY NEVER NEED TO USE THIS SOURCE, AND MAY WANT TO REMOVE IT
147 ; AND USE THE SPACE FOR SOMETHING ELSE. MAKE A COPY FIRST.
148 ; - STAND-ALONE USERS CAN ADD THEIR OWN OPERATIONS AND THEN
149 ; SAVE A BOOTABLE IMAGE OF THE NEW SYSTEM. THE NEW OPERATIONS
150 ; WILL BE AVAILABLE WHEN THE DISK IS BOOTED IN THE FUTURE.
151 ; THE LOADER WHICH IS USED WILL ONLY LOAD IMAGES UP TO 7.9K;
152 ; THIS LEAVES SEVERAL HUNDRED BYTES FOR NEW OPERATIONS, WHICH
153 ; CAN INCLUDE EXTENDING THE SYSTEM BY BRINGING IN SOURCE OR
154 ; OBJECT CODE. TO SAVE THE CURRENT SYSTEM, EXECUTE 'FORTH DEFINITIONS'
155 ; IF NECESSARY TO GET INTO THE FORTH VOCABULARY, THEN 'DECIMAL 34 LOAD'.
156 ; SOME WARNING MESSAGES WILL BE PRINTED (MSG #4); THEY CAN BE
157 ; IGNORED.
158 ; - IF YOU DO WANT TO RE-ASSEMBLE THE SYSTEM FOR STAND-ALONE
159 ; USE (WHICH MOST USERS SHOULD NEVER FIND NECESSARY),
160 ; YOU MUST USE RT-11 TO EDIT AND ASSEMBLE 'FORTH.MAC'. NOTE
161 ; THAT ALTHOUGH THIS LISTING IS ASSEMBLED FOR STAND-ALONE,
162 ; THE SOURCE PROGRAM SUPPLIED IS SET FOR RT-11 ASSEMBLY;
163 ; COMMENT OUT THE 'RT11' DEFINITION, AND REMOVE THE COMMENTING
164 ; ON 'ALONE'. ASSEMBLE, LINK, AND RUN, AND THE SYSTEM SHOULD
165 ; COME UP STAND-ALONE. IMMEDIATELY REMOVE THE RT-11 SYSTEM DISK

47.

166 ; AND PLACE THE FORTH DISK IN DRIVE ZERO. TO REVISE
167 ; THE BOOTABLE IMAGE ON THE FORTH DISK SO THAT YOUR NEW SYSTEM
168 ; BOOTS STAND-ALONE, LIST SCREEN 34 (DECIMAL), AND FOLLOW THE
169 ; INSTRUCTIONS THERE. THE RUN TAKES ABOUT ONE MINUTE.
170 ; - THE BOOTABLE SYSTEM DOES NOT USE HARDWARE MULTIPLY AND DIVIDE.
171 ; IF YOU DON'T HAVE RT-11 TO EDIT AND RECOMPILE WITH 'EIS'
172 ; CONDITIONAL ASSEMBLY, THE MULTIPLY/DIVIDE ROUTINES CAN BE
173 ; PATCHED. IF YOU PATCH FROM THE KEYBOARD MONITOR, THE
174 ; RESTART ADDRESS IS 1000 OCTAL (COLD START) OR 1004 (WARM
175 ; START). SAVE THE NEW VERSION AS A BOOTABLE SYSTEM, AS
176 ; DESCRIBED ABOVE.
177 ; - THE SKEWED DISK I/O OPERATIONS SKIP TRACK ZERO, FOR COMPATIBILITY
178 ; WITH STANDARD PDP-11 SECTOR SKEWING. THE PHYSICAL READ
179 ; OPERATIONS ('RTS', 'WTS', 'NRTS', 'NWTS') CAN READ ANY SECTOR,
180 ; HOWEVER.
181 ; - ALSO THE SYSTEM AS DISTRIBUTED SKIPS THE FIRST 56 SECTORS
182 ; (7 SCREENS) IN ORDER TO SKIP THE BOOT BLOCK AND AN
183 ; RT-11 DIRECTORY. THIS CAUSES THE SCREEN POSITIONS TO BE THE
184 ; SAME FOR STAND-ALONE AND FOR RT-11 (WHICH ACCESSES THE FILE
185 ; 'FORTH.DAT'). YOU CAN CHANGE THIS BY CHANGING THE VALUE OF
186 ; THE VARIABLES 'S-SKIP' (NUMBER OF SCREENS SKIPPED) AND
187 ; 'S-USE' (NUMBER OF SCREENS USED BEFORE ACCESSING THE
188 ; SECOND DISK). THESE VARIABLES CAN BE CHANGED AT ANY TIME,
189 ; SO DISK SCREENS CAN BE READ INTO BUFFERS AND THEN FLUSHED
190 ; TO DIFFERENT LOCATIONS ON THE DISK.
191 ; - ADVANCED USERS MAY NOTE THAT THIS SYSTEM IS DESIGNED TO
192 ; ALLOW THE MEMORY LAYOUT - NUMBER AND LOCATION OF DISK
193 ; BUFFERS, LOCATION OF THE STACK, ETC. - TO BE CHANGED
194 ; DYNAMICALLY, WITHOUT REASSEMBLY.
195 ;
196 ;
197 ; TO BRING UP THIS SYSTEM UNDER RT-11:
198 ; - BE SURE THAT RT-11 IS SELECTED BELOW. THE LINES DEFINING
199 ; 'RSX11M' AND 'ALONE' SHOULD BE COMMENTED OUT; 'RT11' SHOULD
200 ; NOT BE. NOTE THAT THIS DISK IS DISTRIBUTED READY FOR RT-11
201 ; ASSEMBLY (EVEN THOUGH THIS LISTING IS FOR STAND-ALONE).
202 ; - IF YOU HAVE HARDWARE MULTIPLY/DIVIDE, ALSO REMOVE THE
203 ; SEMICOLON FROM THE LINE DEFINING 'EIS'.
204 ; - IF YOU ARE USING AN OLDER VERSION OF RT-11 (VERSION 2),
205 ; YOU MAY NEED TO USE THE MACROS '..V2..' AND '.REGDEF'.
206 ; - ASSEMBLE, LINK, AND RUN. THE SYSTEM SHOULD COME UP AND
207 ; TYPE 'FIG-FORTH' AND THE VERSION NUMBER.
208 ; - TEST THAT IT IS UP BY TRYING SOME ARITHMETIC OR DEFINITIONS, E.G.
209 ; 88 88 * . (NOTE THAT THE '.' MEANS PRINT)
210 ; : SQUARE DUP * ;
211 ; 25 SQUARE .
212 ; OR TYPE 'VLIST' FOR A LIST OF ALL THE FORTH OPERATIONS IN THE
213 ; DICTIONARY.

48.

214 ; - THE DISK SHOULD WORK IF THE DISKETTE IS IN DRIVE 'DK'.
215 ; MAKE SURE THAT 'DK' IS ASSIGNED TO WHATEVER PHYSICAL
216 ; DRIVE YOU ARE USING - OR CHANGE LINE 'RTFILE:' IN
217 ; 'FORTH.MAC'. TEST THE DISK BY TYPING
218 ; 1 LIST
219 ; WHICH SHOULD LIST THE SCREEN WHICH LOADS THE EDITOR,
220 ; ASSEMBLER, AND STRING ROUTINES.
221 ; - IN CASE YOU NEED TO GET A LISTING FROM THE ASSEMBLY OF
222 ; 'FORTH.MAC' (NOT USUALLY NECESSARY), AND YOUR SYSTEM HAS
223 ; ONLY DISKETTES (NO LARGER DISKS), THE 'ALLOCATE' OPTION
224 ; IS NECESSARY BECAUSE OF THE SIZE OF THE '.LST' FILE
225 ; (AROUND 230 BLOCKS). FIRST COPY 'FORTH.MAC' ONTO A
226 ; SEPARATE DISKETTE BY ITSELF. THEN EXECUTE
227 ; .MACRO /LIST:FORTH.LST /ALLOCATE:300. /NOOBJECT
228 ; AND REPLY 'FORTH.MAC' WHEN ASKED FOR 'FILES?'.
229 ;
230 ;
231 ;
232 ; TO BRING UP THE SYSTEM UNDER RSX-11M:
233 ; - THE DISKETTE PROVIDED IS IN RT-11 FILE FORMAT. THE TWO FILES
234 ; MUST BE COPIED OFF THE DISKETTE INTO AN RSX DIRECTORY. THE
235 ; 'FORTH.DAT' FILE MUST BE COPIED IN IMAGE MODE. ANY RSX
236 ; DIRECTORY MAY BE USED. ASSUMING THE DISKETTE IS IN DRIVE 0,
237 ; USE THE RSX COMMANDS:
238 ; >FLX =DX:FORTH.MAC/RT
239 ; >FLX =DX:FORTH.DAT/RT/IM
240 ; INCIDENTALLY, 'FORTH.DAT' IS THE SYSTEM'S 'VIRTUAL MEMORY'
241 ; FILE, USED FOR DISK I/O. THE REST OF THE SYSTEM (THIS
242 ; PROGRAM ALONE) CAN RUN INDEPENDENTLY, EVEN IF 'FORTH.DAT'
243 ; IS NOT AVAILABLE.
244 ; - EDIT 'FORTH.MAC' TO SELECT RSX ASSEMBLY. CHANGE THE SEMICOLON
245 ; TO COMMENT OUT 'RT11' NOT 'RSX11'. LET 'EIS' BE DEFINED IF
246 ; YOU HAVE HARDWARE MULTIPLY/DIVIDE.
247 ; - ASSEMBLE, TASK BUILD, AND RUN. TEST AS WITH RT11 ABOVE.
248 ; - THE DISK I/O SHOULD WORK IF 'FORTH.DAT' IS IN THE DEFAULT
249 ; DEVICE AND DIRECTORY. TEST AS ABOVE.
250 ;
251 ;
252 ;
253 ; THE SYSTEM AS SUPPLIED RESERVES 8000. BYTES FOR YOUR FORTH
254 ; PROGRAMMING AND STACK. THIS IS ENOUGH FOR SUBSTANTIAL PROJECTS.
255 ; (NOTE THAT THE EDITOR, ASSEMBLER, AND STRING PACKAGE, IF LOADED,
256 ; USE MORE THAN 5K OF THIS.) TO CHANGE THIS MEMORY SIZE, CHANGE
257 ; THE '8000.' WHICH IS IN THE LINES FOLLOWING THE LABEL 'DP:',
258 ; NEAR THE END OF THIS PROGRAM. INCIDENTALLY, VERY FEW JOBS
259 ; (E.G. RECURSION) WILL EVER USE MORE THAN 100 WORDS OF THIS SPACE
260 ; FOR THE STACK; THE REST OF THE SPACE IS AVAILABLE FOR A STRING
261 ; STACK (IF USED) OR FOR YOUR PROGRAMS - AND FORTH OBJECT CODE IS
262 ; CONSIDERABLY MORE COMPACT THAN ASSEMBLY.

49.

263 ;
264 ;
265 ;
266 ; THE FORTH VIRTUAL FILE 'FORTH.DAT' IS USED FOR STORING SOURCE
267 ; PROGRAMS (OR DATA). THIS FILE HAS 70 1-K SCREENS (1-70),
268 ; I.E. 140 PDP-11 DISK BLOCKS. SCREENS 4 AND 5 ARE USED BY THE
269 ; SYSTEM FOR STORING ERROR AND WARNING MESSAGES. SCREENS 6-30
270 ; CONTAIN A TEXT EDITOR, ASSEMBLER, STRING PACKAGE, AND MISCELLANEOUS
271 ; EXAMPLES. SCREENS 40 THROUGH 47 CONTAIN A BINARY STAND-ALONE
272 ; SYSTEM (NOT USED UNDER RT-11 OR RSX-11M). USERS MAY WANT
273 ; TO SAVE THEIR SOURCE PROGRAMS AND DATA IN THE BLANK SCREENS.
274 ; THE SIZE OF THIS FORTH SCREENS FILE ('FORTH.DAT') CAN BE INCREASED
275 ; IF NEEDED. IF THE SYSTEM IS TO BE BOOTED STAND-ALONE, THE LOCATION
276 ; OF THE SYSTEM BINARY IMAGE ON THE DISK MUST NOT BE CHANGED;
277 ; THEREFORE, IF THE DISK IS TO BE USED TO RUN STAND-ALONE, DO NOT
278 ; USE RT-11 TO MOVE 'FORTH.DAT' TO ANOTHER PLACE ON THE DISK.
279 ;
280 ;
281 ;
282 ;
283 ;
284 ; NOTE THAT THE RT-11 AND RSX-11M SYSTEMS DO NOT ECHO CHARACTERS
285 ; WHICH ARE INPUT FROM THE TERMINAL. INSTEAD, THEY LET THE OPERATING
286 ; SYSTEM (RT-11 OR RSX-11M) ECHO THEM. THIS IS DONE SO THAT TYPING
287 ; CONVENTIONS WILL BE THE SAME AS THE USER IS FAMILIAR WITH. ALSO,
288 ; TO AVOID SWAPPING DELAYS, THE RSX VERSION OF 'KEY' READS A LINE OF
289 ; CHARACTERS AT A TIME.
290 ;
291 ;
292 ;
293 ;
294 ; CHANGE THESE LINES TO CONTROL CONDITIONAL ASSEMBLY:
295 ;
296 RT11=1 ; COMMENTED OUT UNLESS RT-11
297 ;RSX11=1 ; COMMENTED OUT UNLESS RSX11M
298 ;ALONE=1 ; COMMENTED OUT UNLESS STAND-ALONE
299 EIS=1 ; COMMENTED OUT UNLESS HARDWARE MULTIPLY-DIVIDE
300 ;LINKS=1 ; COMMENTED OUT UNLESS SUBROUTINE LINKAGE FROM
301 ; FORTH TO OTHER LANGUAGES
302 ;
303 ;.PAGE
304 ; **
305 ;
306 ; VARIATIONS FROM F.I.G. MODEL
307 ;
308 ; **

50.

X. Documentation Hints

Programs in Forth or other extensible languages especially need documentation

if other programmers are going to maintain them. Forth coding includes new opera-

tions that are not part of the standard language; these must be described. Also,

they should be designed to form coherent application-related groups.

The user needs to know what arguments an operation takes from the stack,

and what results it returns. This information can be abbreviated in a comment in

source code on disk. E.g. see Screen #6 in the listing of FORTH.DAT below. The

comment in line 3 '(-> N)' indicates that the operation '#ARGS' takes no argu-

ments from the stack, and returns a number to it. 'GETWORD' takes no arguments and

returns no result; 'CURSADDR' takes no arguments and returns an address; 'NLINE'

returns a line #, etc. Since these words are only used internally in the editor,

they aren't described in the editor user documentation.

The next level of documentation is the glossary. The glossary should repeat

the stack information, and tell what the word does. Often a couple sentences is

enough. The Forth Interest Group glossary reproduced below shows that higher-level

words needn't take any more space than lower-level ones. This is probably because

words are selected for purposes chosen by human users, but whatever the reason, a

consequence is that program complexity tends to grow linearly with size. One more

requirement for understandable programs is the design of coherent application-

oriented groupings or vocabularies, operation sets which in effect make Forth into

a special application language. Large applications should have a hierarchical

structure of various levels of language. At any level there will probably be

special-purpose operations which are only used locally to define other words, not

used later. Forth has facilities to hide these words from the user, but that may

not be worth the trouble, as the user is allowed to redefine those names as some-

thing else with no more penalty than a "not unique" warning message. User glos-

saries should omit those words or list them separately, however.

51.

Documentation for maintenance programmers can be a narrative walk-through

explaining the purpose of coding decisions and the working of any unusual code.

Also, any special-purpose operations omitted from the user's glossary should be

described here.

52.

XI. FORTH.DAT Listing

Many of the following source screens are explained elsewhere in the text.

53.

1 39 INDEX

 1 (LOAD SCREEN)
 2 (LOAD SCREEN)
 3
 4 (ERROR, WARNING, AND OTHER MESSAGES - SCREENS 4 AND 5)
 5 (ERROR MESSAGES, CONTINUED)
 6 (EDITOR - SET-UP)
 7 (EDITOR - OPERATIONS)
 8 (EDITOR, SCREEN 3)
 9 (EDITOR, SCREEN 4)
 10 (ASSEMBLER) OCTAL
 11 (ASSEMBLER, CONT.) OCTAL
 12 (ASSEMBLER - INSTRUCTION TABLE) OCTAL
 13 (ASSEMBLER - CONT.) OCTAL
 14 (ASSEMBLER - REGISTERS, MODES, AND CONDITIONS) OCTAL
 15 (ASSEMBLER - STRUCTURED CONDITIONALS) OCTAL
 16
 17 (ASSEMBLER - EXAMPLES)
 18
 19 (STRING ROUTINES) DECIMAL
 20 (STRINGS - CONTINUED)
 21 (STRINGS - CONTINUED)
 22 (STRINGS - CONTINUED)
 23
 24 (TRIG LOOKUP ROUTINES - WITH SINE *10000 TABLE)
 25
 26 (FORTRAN LINKAGE, RSX)
 27
 28 (RT-11 SYSTEM-CALL EXAMPLE - DATE)
 29 (RSX-11M SYSTEM-CALL EXAMPLE - DATE)
 30 (RSX-11M SYSTEM-CALL EXAMPLE - TERMINAL I/O)
 31
 32 (EXAMPLES - RANDOM #S, VIRTUAL ARRAY, RECURSIVE CALL)
 33
 34 (CREATE BOOTABLE IMAGE ON SCREENS 40-47. FOR STAND-ALONE.)
 35 (CREATE A BINARY IMAGE ON SCREENS 40 - 47)
 36 (CREATE BOOT LOADER. NOTE - DOES NOT WRITE BOOT BLOCK)
 37 (CREATE BOOT LOADER, CONT.) OCTAL
 38 (DISK COPY FROM SYSTEM DISK TO DX1)
 39 (** CAUTION ** BINARY IMAGE IN SCREENS 40-47) OK

Screens 40-47 are reserved for binary data, so they are not shown and do not
appear in the screen listings below.

54.

48 70 INDEX

 48
 49 (NOTE CONCERNING SCREENS 50 - 56)
 50 (FLOPPY DRIVER - MACROS)
 51 (FLOPPY DRIVER, NRTS)
 52 (FLOPPY DRIVER - NWTS)
 53 (FLOPPY DRIVER - SKEW, NSETUP)
 54 (FLOPPY - TR/W)
 55 (FLOPPY - ERROR TEST. LOAD AFTER 50.)
 56 (FLOPPY - APPENDAGE OF 53)
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70 OK

Screens 57-70 are empty, so they do not appear in the screen listings below.

55.

SCR # 1
 0 (LOAD SCREEN)
 1 DECIMAL
 2 1 WARNING ! (GET ERR MSGS, NOT #S)
 3
 4 CR ." LOADING EDITOR... " 6 LOAD 7 LOAD 8 LOAD 9 LOAD
 5 CR ." LOADING ASSEMBLER... " 10 LOAD 11 LOAD 12 LOAD 13 LOAD
 6 14 LOAD 15 LOAD
 7 CR ." LOADING STRING PACKAGE... " 19 LOAD 20 LOAD 21 LOAD
 8 22 LOAD
 9 CR
 10 : BYE FLUSH CR ." LEAVING FORTH. HAVE A GOOD DAY." CR BYE ;
 11 CR
 12
 13
 14
 15

SCR # 2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

56.

SCR # 4
 0 (ERROR, WARNING, AND OTHER MESSAGES - SCREENS 4 AND 5)
 1 EMPTY STACK
 2 STACK OR DICTIONARY FULL
 3 HAS INCORRECT ADDRESS MODE
 4 ISN'T UNIQUE
 5
 6 DISC RANGE
 7
 8
 9
 10
 11
 12
 13
 14
 15 FORTH INTEREST GROUP MAY 1979

SCR # 5
 0 (ERROR MESSAGES, CONTINUED)
 1 COMPILATION ONLY, USE IN DEFINITION
 2 EXECUTION ONLY
 3 CONDITIONALS NOT PAIRED
 4 DEFINITION NOT FINISHED
 5 IN PROTECTED DICTIONARY
 6 USE ONLY WHEN LOADING
 7
 8 DECLARE VOCABULARY
 9
 10
 11
 12
 13
 14
 15

SCR # 6
 0 (EDITOR - SET-UP)
 1 VOCABULARY EDITOR IMMEDIATE 0 VARIABLE ESCR DECIMAL
 2 0 VARIABLE CURSOR 0 VARIABLE STACKPTR : STK SP@ STACKPTR ! ;
 3 : #ARGS (->N) SP@ STACKPTR @ SWAP - 2 / 0 MAX ;
 4 : E ESCR @ BLOCK DROP [COMPILE] EDITOR STK ;
 5 : EDIT -DUP IF ESCR ! 0 CURSOR ! E ELSE ." ERR 0 ARG" ENDIF ;
 6 EDITOR DEFINITIONS
 7 : EX FLUSH [COMPILE] FORTH ;
 8 (THE FOLLOWING ARE UTILITY ROUTINES FOR LATER DEFINITIONS.)
 9 : GETWORD (->) 1 WORD HERE 1+ C@ 0= IF 0 HERE C! ENDIF ;
 10 : GETPAD (->) GETWORD HERE PAD 65 CMOVE ;
 11 : RANGE (->) CURSOR @ 0 MAX 1023 MIN CURSOR ! ;
 12 : CURSADDR (-> ADDR) ESCR @ BLOCK UPDATE CURSOR @ + ;
 13 : CLINE (-> POSITION) CURSOR @ 64 MOD ;
 14 : LINEADDR (-> ADDR) CURSADDR CLINE - ;
 15 : NLINE (-> LINE#) CURSOR @ 64 / ;

57.

SCR # 7
 0 (EDITOR - OPERATIONS)
 1 : LDEFAULT (N? -> N) #ARGS IF 64 * CURSOR ! RANGE ENDIF ;
 2 : 1DEFAULT (N? -> N) #ARGS 0= IF 1 ENDIF ;
 3 : NEW LDEFAULT 16 NLINE DO CR QUERY GETPAD PAD 1+ C@ 32 <
 4 IF LEAVE ELSE LINEADDR 64 BLANKS PAD 1+ LINEADDR PAD C@
 5 64 MIN CMOVE 64 CURSOR +! RANGE ENDIF LOOP STK ;
 6 : T LDEFAULT CR LINEADDR PAD 64 CMOVE CURSADDR PAD CLINE + 1+
 7 64 CLINE - CMOVE 95 PAD CLINE + C! NLINE 3 .R SPACE
 8 PAD 65 TYPE STK ;
 9 : R LDEFAULT GETPAD PAD 1+ CURSADDR PAD C@
 10 64 MIN CMOVE PAD C@ CURSOR +! RANGE T STK ;
 11 : L ESCR @ FORTH LIST EDITOR CR T STK ;
 12 : M 1DEFAULT CURSOR +! RANGE T STK ;
 13 : TRADE (M,N---) 2 0 DO 64 * CURSOR ! RANGE LINEADDR SWAP LOOP
 14 DUP PAD 64 CMOVE OVER SWAP 64 CMOVE PAD SWAP 64 CMOVE STK ;
 15

SCR # 8
 0 (EDITOR, SCREEN 3)
 1 : D-+ONLY DUP CURSADDR + CURSADDR 64 CLINE - CMOVE
 2 LINEADDR 64 + OVER - SWAP BLANKS T ;
 3 : D (ADJUST ARG IF NEG, DEFAULT, OUT OF LINE) 1DEFAULT DUP 0<
 4 IF (NEGATIVE ARG) CLINE MINUS MAX DUP CURSOR +! ABS
 5 ELSE 64 CLINE - MIN ENDIF -DUP IF D-+ONLY ENDIF STK ;
 6 : I LDEFAULT CURSADDR PAD 64 CMOVE GETWORD HERE 1+ CURSADDR
 7 HERE C@ CMOVE PAD CURSADDR HERE C@ + LINEADDR 64 + OVER -
 8 0 MAX CMOVE HERE C@ CURSOR +! RANGE T STK ;
 9 : COMP (ADDR ADDR LEN -> BOOL. TEST FOR STRINGS EQUAL)
 10 OVER + SWAP DO DUP C@ FORTH I C@ -
 11 IF (UNEQUAL) DROP 0 LEAVE ELSE 1+ ENDIF LOOP ;
 12 : SEARCH (ADDR LEN -> ADDR-OR-0) HERE C@ - 1 MAX
 13 OVER + SWAP 0 ROT ROT DO FORTH I HERE 1+ HERE C@ COMP
 14 IF DROP FORTH I LEAVE ENDIF LOOP ;
 15

SCR # 9
 0 (EDITOR, SCREEN 4)
 1 0 VARIABLE SAVESTRING 64 ALLOT (TO STORE SEARCH STRING)
 2 : SAVEARG (->. SAVE OR RESTORE SEARCH STRING ARGUMENT)
 3 HERE 1+ C@ IF (NOT NULL) HERE SAVESTRING HERE C@ 1+ CMOVE
 4 ELSE (NULL) SAVESTRING HERE SAVESTRING C@ 1+ CMOVE ENDIF ;
 5 : S (->) LDEFAULT 1 WORD SAVEARG CURSADDR 1024 CURSOR @
 6 - SEARCH -DUP IF CURSADDR - HERE C@ + CURSOR +! RANGE ENDIF
 7 T STK ;
 8 : -R SAVESTRING C@ MINUS D I ;
 9 : SCRATCH EMPTY-BUFFERS EX ;
 10 : SPREAD (N ->) LDEFAULT NLINE DUP 14 > IF ." CAN'T SPREAD"
 11 CR ELSE 0 MAX DUP 1 - 14 DO FORTH I EDITOR DUP 1+ TRADE
 12 -1 +LOOP 64 * ESCR @ BLOCK + 64 BLANKS ENDIF ;
 13 FORTH DEFINITIONS
 14 : SCREENMOVE (FROM TO ->) FLUSH SWAP BLOCK SWAP
 15 BLOCK UPDATE 1024 CMOVE ;

58.

SCR # 10
 0 (ASSEMBLER) OCTAL
 1 VOCABULARY ASSEMBLER IMMEDIATE 0 VARIABLE OLDBASE
 2 : ENTERCODE [COMPILE] ASSEMBLER BASE @ OLDBASE ! OCTAL SP@ ;
 3 : CODE CREATE ENTERCODE ;
 4 ASSEMBLER DEFINITIONS
 5 ' ENTERCODE 2 - ' ;CODE 10 + ! (PATCH ';CODE')
 6 : FIXMODE (COMPLETE THE MODE PACKET)
 7 DUP -1 = IF DROP ELSE DUP 10 SWAP U< IF 67 ENDIF ENDIF ;
 8 : OP <BUILDS , DOES> @ , ;
 9 : ORMODE (MODE ADDR -> . SET MODE INTO INSTR.)
 10 SWAP OVER @ OR SWAP ! ;
 11 : ,OPERAND (?OPERAND MODE ->) DUP 67 = OVER 77 = OR IF (PC)
 12 SWAP HERE 2 + - SWAP ENDIF DUP 27 = OVER 37 = OR (LITERAL)
 13 SWAP 177760 AND 60 = OR (RELATIVE) IF , ENDIF ;
 14 : 1OP <BUILDS , DOES> @ , FIXMODE DUP HERE 2 -
 15 ORMODE ,OPERAND ; DECIMAL

SCR # 11
 0 (ASSEMBLER, CONT.) OCTAL
 1 : SWAPOP (-> . EXCHANGE OPERANDS OF 3-WORD INSTR, ADJ. PC-REL)
 2 HERE 2 - @ HERE 6 - @ 6700 AND 6700 = IF (PC-REL) 2 + ENDIF
 3 HERE 4 - @ HERE 6 - @ 67 AND 67 = IF (PC-REL) 2 - ENDIF
 4 HERE 2 - ! HERE 4 - ! ;
 5 : 2OP <BUILDS , DOES> @ ,
 6 FIXMODE DUP HERE 2 - DUP >R ORMODE ,OPERAND
 7 FIXMODE DUP 100 * R ORMODE ,OPERAND HERE R> - 6 =
 8 IF SWAPOP ENDIF ;
 9 : ROP <BUILDS , DOES> @ , FIXMODE DUP HERE 2 - DUP >R ORMODE
 10 ,OPERAND DUP 7 SWAP U< IF ." ERR-REG-B " ENDIF
 11 100 * R> ORMODE ;
 12 : BOP <BUILDS , DOES> @ , HERE - DUP 376 >
 13 IF ." ERR-BR+ " . ENDIF DUP -400 < IF ." ERR-BR- " .
 14 ENDIF 2 / 377 AND HERE 2 - ORMODE ;
 15 DECIMAL

SCR # 12
 0 (ASSEMBLER - INSTRUCTION TABLE) OCTAL
 1 010000 2OP MOV, 110000 2OP MOVB, 020000 2OP CMP,
 2 120000 2OP CMPB, 060000 2OP ADD, 160000 2OP SUB,
 3 030000 2OP BIT, 130000 2OP BITB, 050000 2OP BIS,
 4 150000 2OP BISB, 040000 2OP BIC, 140000 2OP BICB,
 5 005000 1OP CLR, 105000 1OP CLRB, 005100 1OP COM,
 6 105100 1OP COMB, 005200 1OP INC, 105200 1OP INCB,
 7 005300 1OP DEC, 105300 1OP DECB, 005400 1OP NEG,
 8 105400 1OP NEGB, 005700 1OP TST, 105700 1OP TSTB,
 9 006200 1OP ASR, 106200 1OP ASRB, 006300 1OP ASL,
 10 106300 1OP ASLB, 006000 1OP ROR, 106000 1OP RORB,
 11 006100 1OP ROL, 106100 1OP ROLB, 000300 1OP SWAB,
 12 005500 1OP ADC, 105500 1OP ADCB, 005600 1OP SBC,
 13 105600 1OP SBCB, 006700 1OP SXT, 000100 1OP JMP,
 14 074000 ROP XOR, 004000 ROP JSR,
 15 : RTS, 200 OR , ; DECIMAL

59.

SCR # 13
 0 (ASSEMBLER - CONT.) OCTAL
 1 000400 BOP BR, 001000 BOP BNE, 001400 BOP BEQ,
 2 100000 BOP BPL, 100400 BOP BMI, 102000 BOP BVC,
 3 102400 BOP BVS, 103000 BOP BCC, 103400 BOP BCS,
 4 002000 BOP BGE, 002400 BOP BLT, 003400 BOP BLE,
 5 101000 BOP BHI, 101400 BOP BLOS, 103000 BOP BHIS,
 6 103400 BOP BLO, 003000 BOP BGT, 000003 OP BPT,
 7 000004 OP IOT, 000002 OP RTI, 000006 OP RTT,
 8 000000 OP HALT, 000001 OP WAIT, 000005 OP RESET,
 9 000241 OP CLC, 000242 OP CLV, 000244 OP CLZ,
 10 000250 OP CLN, 000261 OP SEC, 000262 OP SEV,
 11 000264 OP SEZ, 000270 OP SEN, 000277 OP SCC,
 12 000257 OP CCC, 000240 OP NOP, 006400 OP MARK,
 13 : EMT, 104000 + , ;
 14
 15 DECIMAL

SCR # 14
 0 (ASSEMBLER - REGISTERS, MODES, AND CONDITIONS) OCTAL
 1 : C CONSTANT ; 0 C R0 1 C R1 2 C R2 3 C R3 4 C R4
 2 5 C R5 6 C SP 7 C PC 2 C W 3 C U 4 C IP 5 C S 6 C RP
 3 : RTST (R MODE -> MODE) OVER DUP 7 > SWAP 0 < OR
 4 IF ." NOT A REGISTER: " OVER . ENDIF + -1 ;
 5 :)+ 20 RTST ; : -) 40 RTST ; : I) 60 RTST ;
 6 : @)+ 30 RTST ; : @-) 50 RTST ; : @I) 70 RTST ;
 7 : # 27 -1 ; : @# 37 -1 ;
 8 : () DUP 10 U< IF (REGISTER DEFERRED) 10 + -1
 9 ELSE (RELATIVE DEFERRED) 77 -1 ENDIF ;
 10 (NOTE - THE FOLLOWING CONDITIONALS REVERSED FOR 'IF,', ETC.)
 11 001000 C EQ 001400 C NE 100000 C MI 100400 C PL
 12 102000 C VS 102400 C VC 103000 C CS 103400 C CC
 13 002000 C LT 002400 C GE 003000 C LE 003400 C GT
 14 101000 C LOS 101400 C HI 103000 C LO 103400 C HIS
 15 DECIMAL

SCR # 15
 0 (ASSEMBLER - STRUCTURED CONDITIONALS) OCTAL
 1
 2 : IF, (CONDITION -> ADDR) HERE SWAP , ;
 3 : IPATCH (ADDR ADDR -> .) OVER - 2 / 1 - 377 AND
 4 SWAP DUP @ ROT OR SWAP ! ;
 5 : ENDIF, (ADDR ->) HERE IPATCH ; : THEN, ENDIF, ;
 6 : ELSE, (ADDR -> ADDR) 00400 , HERE IPATCH HERE 2 - ;
 7 : BEGIN, (-> ADDR) HERE ;
 8 : WHILE, (CONDITION -> ADDR) HERE SWAP , ;
 9 : REPEAT, (ADDR ADDR ->) HERE 400 , ROT IPATCH HERE IPATCH ;
 10 : UNTIL, (ADDR CONDITION ->) , HERE 2 - SWAP IPATCH ;
 11 : C; CURRENT @ CONTEXT ! OLDBASE @ BASE ! SP@ 2+ =
 12 IF SMUDGE ELSE ." CODE ERROR, STACK DEPTH CHANGED " ENDIF ;
 13
 14 : NEXT, IP)+ W MOV, W @)+ JMP, ;
 15 FORTH DEFINITIONS DECIMAL

60.

SCR # 16
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 17
 0 (ASSEMBLER - EXAMPLES)
 1 CODE TEST1 33006 # 33000 MOV, NEXT, C;
 2 CODE TEST2 555 # 33000 () MOV, NEXT, C;
 3 CODE TESTDUP S () S -) MOV, NEXT, C;
 4 CODE TEST0 R0 S -) MOV, NEXT, C;
 5 CODE TESTBYTE 33006 R1 MOVB, R1 S -) MOV, NEXT, C;
 6 CODE TEST3 33000 # R1 MOV, 444 # 20 R1 I) MOV, NEXT, C;
 7 CODE TEST-DUP S () TST, NE IF, S () S -) MOV, ENDIF, NEXT, C;
 8 CODE TESTLP1 15 # R1 MOV, BEGIN, R1 DEC, GT WHILE, R1 S -) MOV,
 9 REPEAT, NEXT, C;
 10 CODE TESTLP2 15 # R1 MOV, BEGIN, R1 S -) MOV, R1 DEC,
 11 EQ UNTIL, NEXT, C;
 12 : TESTVARIABLE CONSTANT ;CODE W S -) MOV, NEXT, C;
 13
 14
 15

SCR # 18
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

61.

SCR # 19
 0 (STRING ROUTINES) DECIMAL
 1 (NOTE: STRING-STACK PTR, $SP, IS 300 BYTES FROM STACK ORIGIN)
 2 300 VARIABLE STACKSIZE S0 @ STACKSIZE @ - VARIABLE $SP
 3 : $CLEAR (->) S0 @ STACKSIZE @ - $SP ! ; $CLEAR
 4 : $LEN (-> LENGTH . LENGTH OF TOP OF $STACK) $SP @ DUP S0 @
 5 STACKSIZE @ - < 0= IF ." $STACK EMPTY" QUIT ELSE @ ENDIF ;
 6 : $DROP (->. DROP FROM $STACK) $LEN 2+ =CELLS $SP +! ;
 7 : $COUNT (ADDR -> ADDR LENGTH) DUP 2+ SWAP @ ;
 8 : $. (->. PRINT STRING) $SP @ $COUNT -TRAILING TYPE $DROP ;
 9 : $?OVER (N-> .) HERE 256 + + $SP @ < 0=
 10 IF ." WOULD CAUSE $OVERFLOW" QUIT ENDIF ;
 11 : $@TEXT (ADDR CNT ->. MOVE TEXT INTO $STACK) DUP 2+ =CELLS
 12 DUP $?OVER MINUS $SP +! $SP @ ! $SP @ $COUNT CMOVE ;
 13 : $@ (FROM-ADDR -> . STRING INTO $STACK) $COUNT $@TEXT ;
 14 : (") R COUNT DUP 1+ =CELLS R> + >R $@TEXT ;
 15

SCR # 20
 0 (STRINGS - CONTINUED)
 1 : $NULL (CREATE NULL STRING) -2 $SP +! 0 $SP @ ! ;
 2 : " (->. STRING TO $STACK - COMPILE OR EXECUTE) STATE @
 3 IF COMPILE (") 34 WORD HERE C@ 1+ =CELLS ALLOT
 4 ELSE 34 WORD HERE COUNT $@TEXT ENDIF ; IMMEDIATE
 5 : $! (TO-ADDR -> . MOVE STRING FROM $STACK TO MEMORY.)
 6 $SP @ SWAP $LEN 2+ CMOVE $DROP ;
 7 : $DIM (LEN -> . CREATES STRING VARIABLE OF GIVEN LENGTH.)
 8 0 CONSTANT HERE HERE 2 - ! 2+ =CELLS ALLOT ;
 9 : $VARIABLE (-> . CREATES $VAR FROM $STACK TOP.) $LEN $DIM
 10 $SP @ HERE $LEN 2+ =CELLS - $LEN 2+ CMOVE $DROP ;
 11 : $DUP (->) $SP @ $@ ;
 12 : $SEG (BEGIN END ->) OVER - 1+ SWAP 1 -
 13 $SP @ 2+ + SWAP $@TEXT ;
 14 : $STR (N ->) S->D SWAP OVER DABS <# #S SIGN #> $@TEXT ;
 15

SCR # 21
 0 (STRINGS - CONTINUED)
 1 : $VAL (-> N . POSITIVE ONLY) HERE 33 32 FILL
 2 $SP @ 2+ HERE $LEN CMOVE 0 S->D HERE 1 - (NUMBER)
 3 DROP $DROP DROP ;
 4 : $SECOND $LEN =CELLS 2+ $SP @ + DUP S0 @ STACKSIZE @ - < 0=
 5 IF ." ERROR, NO SECOND STRING" QUIT ENDIF ;
 6 : $OVER $SECOND $@ ;
 7 : MOVEW (FROM TO NBYTES -> . LIKE 'CMOVE' BUT FROM HIGH END)
 8 2 - -2 SWAP DO OVER I + @ OVER I + ! -2 +LOOP DROP DROP ;
 9 : $SWAP (->) $OVER $SP @ (FROM) DUP $LEN =CELLS 2+ +
 10 (TO) $LEN =CELLS 2+ $SECOND @ =CELLS 2+ + (# OF BYTES)
 11 MOVEW $LEN =CELLS 2+ $SP +! ;
 12
 13
 14
 15

62.

SCR # 22
 0 (STRINGS - CONTINUED)
 1 0 VARIABLE TEMP
 2 : $COMP (-> NEG OR 0 OR POS. COMPARE STRINGS) 0 TEMP !
 3 $SECOND 2+ $SP @ 2+ (STRING TEXT ADDRESSES)
 4 $LEN $SECOND @ MIN (# CHARACTERS TO COMPARE)
 5 0 DO OVER I + C@ OVER I + C@ - -DUP IF LEAVE TEMP ! ENDIF
 6 LOOP DROP DROP TEMP @ $DROP $DROP ;
 7 : $< (-> BOOL) $COMP 0< ;
 8 : $= (-> BOOL) $COMP 0= ;
 9 : $> (-> BOOL) $COMP 0 > ;
 10 : $+-EVEN (->) $LEN $SWAP $SP @ (FROM) DUP 2+
 11 $LEN =CELLS 2+ (#) MOVEW 2 $SP +! $LEN + $SP @ ! ;
 12 : $+ (-> . CONCATENATE) $LEN $SECOND @ (SAVE LENGTHS)
 13 $+-EVEN DUP 1 AND IF $SP @ 2+ + OVER SWAP DUP 1+ SWAP ROT
 14 CMOVE 1 AND IF $SP @ DUP 2+ $LEN 2+ MOVEW 2 $SP +! ENDIF
 15 ELSE DROP DROP ENDIF ;

SCR # 23
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 24
 0 (TRIG LOOKUP ROUTINES - WITH SINE *10000 TABLE)
 1 : TABLE <BUILDS 0 DO , LOOP DOES> SWAP 2 * + @ ;
 2 10000 9998 9994 9986 9976 9962 9945 9925 9903 9877
 3 9848 9816 9781 9744 9703 9659 9613 9563 9511 9455
 4 9397 9336 9272 9205 9135 9063 8988 8910 8829 8746
 5 8660 8572 8480 8387 8290 8192 8090 7986 7880 7771
 6 7660 7547 7431 7314 7193 7071 6947 6820 6691 6561
 7 6428 6293 6157 6018 5878 5736 5592 5446 5299 5150
 8 5000 4848 4695 4540 4384 4226 4067 3907 3746 3584
 9 3420 3256 3090 2924 2756 2588 2419 2250 2079 1908
 10 1736 1564 1392 1219 1045 0872 0698 0523 0349 0175
 11 0000 91 TABLE SINTABLE
 12 : S180 DUP 90 > IF 180 SWAP - ENDIF SINTABLE ;
 13 : SIN (N -> SIN) 360 MOD DUP 0< IF 360 + ENDIF DUP 180 >
 14 IF 180 - S180 MINUS ELSE S180 ENDIF ;
 15 : COS (N -> COS) 90 + SIN ;

63.

SCR # 25
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 26
 0 (FORTRAN LINKAGE, RSX)
 1 CODE ACALL (ARGS... N ADDR -> . CALL FORTRAN, ETC.)
 2 S)+ R2 MOV, (SAVE ENTRY ADDRESS IN REGISTER)
 3 R3 RP -) MOV, R4 RP -) MOV, R5 RP -) MOV, (SAVE R3,R4,R5)
 4 S R5 MOV, (THE STACK WILL BE THE ARG. LIST)
 5 PC R2 () JSR, (LINK THROUGH R2)
 6 RP)+ R5 MOV, RP)+ R4 MOV, RP)+ R3 MOV, (RESTR R3,R4,R5)
 7 S)+ R2 MOV, R2 R2 ADD, R2 S ADD, (DROP THE ARGS)
 8 NEXT, C;
 9
 10 (THIS IS AN EXAMPLE - WRITE LINES ON AN RSX FILE)
 11 0 VARIABLE NFORT
 12 : FILECALL 2 VLINK @ ACALL ;
 13 : OPEN 1 NFORT ! 0 NFORT FILECALL ;
 14 : CLOSE 3 NFORT ! 0 NFORT FILECALL ;
 15 : WRITE (ADDR ->. WRITE A LINE) 2 NFORT ! NFORT FILECALL ;

SCR # 27
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

64.

SCR # 28
 0 (RT-11 SYSTEM-CALL EXAMPLE - DATE)
 1 CODE DATE 12 400 * # R0 MOV, 374 EMT, R0 S -) MOV, NEXT, C;
 2 : YEAR (-> N) DATE 31 AND 72 + ;
 3 : DAY (-> N) DATE 32 / 31 AND ;
 4 : MONTH (-> N) DATE 1024 / 15 AND ;
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 29
 0 (RSX-11M SYSTEM-CALL EXAMPLE - DATE)
 1 DECIMAL
 2 0 VARIABLE TBUFF 14 ALLOT
 3 CODE TIME TBUFF # SP -) MOV, 2 400 * 75 + # SP -) MOV,
 4 377 EMT, NEXT, C;
 5 : YEAR (-> N) TIME TBUFF @ ;
 6 : MONTH (-> N) TIME TBUFF 2+ @ ;
 7 : DAY (-> N) TIME TBUFF 4 + @ ;
 8 : HOUR (-> N) TIME TBUFF 6 + @ ;
 9 : MINUTE (-> N) TIME TBUFF 8 + @ ;
 10 : SECOND (-> N) TIME TBUFF 10 + @ ;
 11 : TICK (-> N) TIME TBUFF 12 + @ ;
 12 : TICKS/SECOND (-> N) TIME TBUFF 14 + @ ;
 13
 14
 15

SCR # 30
 0 (RSX-11M SYSTEM-CALL EXAMPLE - TERMINAL I/O)
 1
 2 : PUSH ASSEMBLER SP -) MOV, FORTH ;
 3 0 VARIABLE INBUF 78 ALLOT
 4 0 VARIABLE IOSTAT 2 ALLOT
 5 CODE INPUT 0 # PUSH 0 # PUSH 0 # PUSH 0 # PUSH
 6 120 # PUSH INBUF # PUSH 0 # PUSH IOSTAT # PUSH
 7 4 # PUSH 4 # PUSH 10400 # PUSH 6003 # PUSH
 8 377 EMT, NEXT, C;
 9
 10
 11
 12
 13
 14
 15

65.

SCR # 31
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 32
 0 (EXAMPLES - RANDOM #S, VIRTUAL ARRAY, RECURSIVE CALL)
 1 (RANDOM NUMBER GENERATOR. CAUTION - EVERY 128TH RELATED.)
 2 1001 VARIABLE RSEED
 3 : URAND (-> N, UNSIGNED 0-65K)
 4 RSEED @ 2725 U* 13947 S->D D+ DROP DUP RSEED ! ;
 5 : RAND (N -> M, 0 TO N-1)
 6 URAND U* SWAP DROP ;
 7 ('VARRAY' CREATES A VIRTUAL ARRAY ON DISK SCREENS.)
 8 : VARRAY (LRECL #RECS STARTSCREEN ->)
 9 <BUILDS , , DUP , 1024 SWAP / ,
 10 (STARTSCREEN, #RECS, LRECL, RECS/SCREEN)
 11 DOES> >R DUP R 2 + @ < 0= OVER 0< OR
 12 IF ." ERROR, V-ARRAY RANGE " . R> DROP
 13 ELSE R 6 + @ /MOD R @ + BLOCK SWAP R> 4 + @ * + THEN ;
 14
 15 : MYSELF (RECURSIVE CALL) LATEST PFA CFA , ; IMMEDIATE

SCR # 33
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

66.

SCR # 34
 0 (CREATE BOOTABLE IMAGE ON SCREENS 40-47. FOR STAND-ALONE.)
 1 (NOTE - THIS DOES NOT WRITE THE BOOT BLOCK OR THE OTHER FORTH)
 2 (SCREENS. IF YOU START WITH A BLANK DISK, FIRST USE THE COPY)
 3 (PROGRAM ON SCREEN 38, AND MOVE THE COPY TO DX0. THEN EXECUTE)
 4 ('DECIMAL 34 LOAD'. THE BOOT LOADER WILL ONLY HANDLE)
 5 (IMAGES UP TO 7.9K BYTES. THIS LEAVES SEVERAL HUNDRED)
 6 (BYTES FOR NEW OPERATIONS, AND THESE COULD LOAD MORE.)
 7 DECIMAL : SIZETEST 1024 8 * 256 - HERE U< IF ." TOO BIG"
 8 QUIT THEN ; SIZETEST FORGET SIZETEST
 9 OCTAL (NEXT LINE RESETS THE START-UP TABLE.)
 10 LATEST 14 +ORIGIN ! HERE 36 +ORIGIN ! HERE 34 +ORIGIN !
 11 DECIMAL 35 LOAD CREATE-BINARY-IMAGE (WRITE SYSTEM)
 12 10 LOAD 11 LOAD 12 LOAD 13 LOAD 14 LOAD 15 LOAD (ASSEMBLER)
 13 36 LOAD (WRITES BOOT LOADER AT END OF SCREEN 47)
 14 COLD (COLD START OF NEW SYSTEM - GET RID OF ASSEMBLER ETC.)
 15

SCR # 35
 0 (CREATE A BINARY IMAGE ON SCREENS 40 - 47)
 1 (START AT ZERO)
 2 : CREATE-BINARY-IMAGE 48 40 DO
 3 I 40 - 1024 * (ADDRESS TO MOVE FROM)
 4 I BLOCK (ADDRESS TO MOVE TO)
 5 1024 CMOVE UPDATE LOOP FLUSH ;
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 36
 0 (CREATE BOOT LOADER. NOTE - DOES NOT WRITE BOOT BLOCK)
 1 ASSEMBLER DEFINITIONS OCTAL
 2 : INIT, 1000 # R0 MOV, 00000 # R1 MOV,
 3 177170 # R4 MOV, 200 # R3 MOV, ;
 4 : ?TERM, R1 () TSTB, LE IF, 1000 @# JMP, ENDIF, ;
 5 : WAITT, BEGIN, R3 R4 () BIT, NE UNTIL, ;
 6 : WAITD, BEGIN, 40 # R4 () BIT, NE UNTIL, ;
 7 : ?ERR, R4 () TST, LE IF, HALT, ENDIF, ;
 8 : BLOOP, R3 R2 MOV,
 9 BEGIN, WAITT, 2 R4 I) R0)+ MOVB, R2 DEC, EQ UNTIL, ;
 10 : NEXTTAB, 1 R1 I) R5 MOVB, R5 INC, R5 INC,
 11 R5 32 # CMP, GT IF, 32 # R5 SUB, THEN,
 12 R5 1 R1 I) MOVB, 1 R1 I) 2 R1 I) CMPB,
 13 EQ IF, 3 # R1 ADD, ENDIF, ;
 14
 15 DECIMAL 37 LOAD

67.

SCR # 37
 0 (CREATE BOOT LOADER, CONT.) OCTAL
 1 : TRACK, R1 () R5 MOVB, R5 2 R4 I) MOV, ;
 2 : SECTOR, 1 R1 I) R5 MOVB, R5 2 R4 I) MOV, ;
 3 : MAINL, BEGIN, ?TERM, 7 # R4 () MOV, WAITT, SECTOR, WAITT,
 4 TRACK, WAITD, ?ERR, 3 # R4 () MOV, BLOOP, NEXTTAB,
 5 400 UNTIL, ;
 6 : 2, 400 * + , ;
 7 : TABLE, 17 27 2, 7 17 2, 10 10 2,
 8 20 15 2, 15 20 2, 16 16 2,
 9 21 23 2, 23 21 2, 24 26 2, 0 0 2, ;
 10
 11 CODE BOOT 35000 JMP, C;
 12 : TASK ;
 13 35000 DP ! HERE 6 + INIT, WAITD, MAINL, HERE SWAP ! TABLE,
 14 FORGET TASK
 15 17572 35006 ! 35000 21 26 WTS 35200 21 30 WTS

SCR # 38
 0 (DISK COPY FROM SYSTEM DISK TO DX1)
 1 DECIMAL 20000 CONSTANT C
 2 : GET 26 0 DO C I 128 * + OVER I 3 * 26 MOD 1+ RTS
 3 LOOP ;
 4 : PUT 26 0 DO C I 128 * + OVER 77 + I 3 * 26 MOD 1+ WTS
 5 LOOP ;
 6 : COPY 77 0 DO I GET DROP I PUT DROP LOOP ;
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 39
 0 (** CAUTION ** BINARY IMAGE IN SCREENS 40-47)
 1 (SCREENS 40 - 47 CONTAIN THE BOOTABLE STAND-ALONE SYSTEM.)
 2 (THE LAST 256 BYTES OF THIS SYSTEM IMAGE CONTAIN A LOADER.)
 3 (ADVISE RESERVING SCREENS 48 - 59 FOR BINARY PROGRAM OVERLAYS.)
 4 (FOR NOW, 50-56 CONTAIN AN EXAMPLE OF FORTH PROGRAMMING FOR)
 5 (A FLOPPY DRIVER. THESE SCREENS ARE NO LONGER USED BY THE)
 6 (SYSTEM. THEY ARE FOR ILLUSTRATION ONLY, AND MAY BE)
 7 (DELETED.)
 8
 9
 10
 11
 12
 13
 14
 15

68.

SCR # 48
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 49
 0 (NOTE CONCERNING SCREENS 50 - 56)
 1 SCREENS 50 - 56 ARE NOT USED IN THE CURRENT SYSTEM. THEY
 2 ARE LEFT OVER FROM DEVELOPMENT OF THE STAND-ALONE VERSION'S
 3 DISKETTE HANDLER. THOUGH NOT PRODUCTIZED OR FULLY DOCUMENTED,
 4 THEY WERE LEFT ON THE DISKETTE FOR POSSIBLE STUDY BY ADVANCED
 5 USERS. OF COURSE THEY CAN BE ERASED, AND THE SPACE RE-USED.
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

SCR # 50
 0 (FLOPPY DRIVER - MACROS)
 1 ASSEMBLER DEFINITIONS OCTAL (SET UP MACROS)
 2 : WAITT, (->. MACRO - WAIT FOR 'TRANSFER' FLAG)
 3 BEGIN, RXCS 200 # BIT, NE UNTIL, ;
 4 : WAITD, (->. MACRO - WAIT FOR 'DONE' FLAG)
 5 BEGIN, RXCS 40 # BIT, NE UNTIL, ;
 6 : EMPTY, (ADDR ->. USES R0. EMPTY CONTROLLER'S BUFFER)
 7 S)+ R0 MOV, (ADDRESS) 200 # S -) MOV, (COUNT)
 8 BEGIN, WAITT, RXDB R0)+ MOVB, (MOVE 1 BYTE)
 9 S () DEC, EQ UNTIL, S)+ TST, (POP) ;
 10 : FILL, (ADDR ->. USES R0. FILL CONTROLLER'S BUFFER)
 11 S)+ R0 MOV, (ADDRESS) 200 # S -) MOV, (COUNT)
 12 BEGIN, WAITT, R0)+ RXDB MOVB, (MOVE 1 BYTE)
 13 S () DEC, EQ UNTIL, S)+ TST, (POP) ;
 14 FORTH DEFINITIONS DECIMAL
 15 55 LOAD 51 LOAD 52 LOAD 53 LOAD 54 LOAD

69.

SCR # 51
 0 (FLOPPY DRIVER, NRTS)
 1 CODE NRTS (ADDRN TRN SECN ... ADDR1 TR1 SEC1 N -> FLAG.)
 2 (USES R0, R1. READ N SECTORS.)
 3 S)+ R1 MOV, (# OF SECTORS TO READ)
 4 BEGIN, 7 # R0 MOV, PC ' DRIVE2? JSR, (ADJUST)
 5 R0 RXCS MOV, WAITT, ('READ' COMMAND)
 6 S)+ RXDB MOV, WAITT, (MOVE SECTOR #)
 7 S)+ RXDB MOV, WAITD, (MOVE TRACK #) ERRTST,
 8 3 # RXCS MOV, ('EMPTY' COMMAND)
 9 EMPTY, ERRTST,
 10 R1 DEC, EQ UNTIL,
 11 S -) CLR, (FLAG, 0=GOOD READ) NEXT, C;
 12
 13 : RTS (ADDR TR SEC -> FLAG)
 14 1 NRTS IF ." DISK READ ERROR IN RTS" QUIT THEN ;
 15

SCR # 52
 0 (FLOPPY DRIVER - NWTS)
 1 CODE NWTS (ADDRN TRN SECN ... ADDR1 TR1 SEC1 N -> FLAG.)
 2 (USES R0, R1. WRITE N SECTORS)
 3 S)+ R1 MOV, (# OF SECTORS TO BE WRITTEN)
 4 BEGIN,
 5 1 # RXCS MOV, WAITT, ('FILL' COMMAND)
 6 4 S I) S -) MOV, (PUSH COPY OF ADDRESS)
 7 FILL, ERRTST, 5 # R0 MOV, PC ' DRIVE2? JSR, (ADJUST)
 8 R0 RXCS MOV, WAITT, ('WRITE' COMMAND)
 9 S)+ RXDB MOV, WAITT, (MOVE SECTOR #)
 10 S)+ RXDB MOV, WAITD, (MOVE TRACK #) ERRTST,
 11 S)+ TST, (POP ADDRESS)
 12 R1 DEC, EQ UNTIL,
 13 S -) CLR, (FLAG, 0 = GOOD WRITE) NEXT, C;
 14 : WTS (ADDR TR SEC -> FLAG)
 15 1 NWTS IF ." DISK WRITE ERROR IN WTS" QUIT THEN ;

SCR # 53
 0 (FLOPPY DRIVER - SKEW, NSETUP)
 1 OCTAL
 2 (NOTE - THE 'SEQUENCE #' IS 0-ORIGIN SECTOR SEQUENCE, SKEWED)
 3 : SKEW1 (SEQUENCE# -> TRACK SECTOR)
 4 (TR=S/32+1; SEC=<6<T-1>+2S+<S MOD 32>/15>MOD 32 + 1)
 5 DUP 32 / SWAP
 6 OVER 6 * OVER 2 * + SWAP 32 MOD 15 / + 32 MOD 1+
 7 SWAP 1+ SWAP ; DECIMAL 56 LOAD
 8 : NSETUP (ADDR SEQ# N -> ADDRN TRN SECN ... ADDR1 TR1 SEC1)
 9 OVER 1975 > IF SWAP 56 + SWAP THEN (1920 VS 2002 PER DISK)
 10 ROT OVER 128 * + ROT ROT (INCREMENT ADDRESS TO PAST AREA)
 11 OVER + 1 - SWAP 1 - SWAP (SET UP FOR +LOOP ON SEQ#)
 12 DO 128 - (ADJUST THE ADDRESS)
 13 DUP (COPY ADDRESS) I SKEW (COMPUTE TRACK & SECTOR)
 14 ROT (BRING COPY OF ADDRESS TO STACK TOP)
 15 -1 +LOOP DROP (EXTRA ADDRESS) ;

70.

SCR # 54
 0 (FLOPPY - TR/W)
 1 : ?READERR (FLAG ->)
 2 IF ." DISK READ ERROR" QUIT ENDIF ;
 3 : ?WRITERR (FLAG ->)
 4 IF ." DISK WRITE ERROR" QUIT ENDIF ;
 5 : TR/W (ADDR BLOCK# R=1,W=0 ->)
 6 >R 6 + 8 * R> (CHANGE SCREEN # TO FIRST SEQ #)
 7 IF 8 NSETUP 8 NRTS ?READERR
 8 ELSE 8 NSETUP 8 NWTS ?WRITERR THEN ;
 9 ' TR/W 2 - ' BUFFER 44 + !
 10 ' TR/W 2 - ' BLOCK 50 + !
 11 ' TR/W 2 - ' FLUSH 36 + !
 12
 13
 14
 15

SCR # 55
 0 (FLOPPY - ERROR TEST. LOAD AFTER 50.)
 1 ASSEMBLER DEFINITIONS OCTAL
 2 : ERRTST, (MACRO - IF ERROR, -> -1 AND EXIT)
 3 RXCS TST, LT IF, -1 # S -) MOV, NEXT, THEN, ;
 4 FORTH DEFINITIONS DECIMAL
 5
 6 CODE DRIVE2? (->. SUBROUTINE - ADJUST R0, TRACK IF SECOND DR)
 7 2 S I) 114 # CMP, (TRACK > 76 ?)
 8 HI IF, 115 # 2 S I) SUB, (SUBTRACT 77)
 9 20 # R0 BIS, (SET UNIT-SELECT BIT)
 10 THEN, PC RTS, C;
 11
 12
 13
 14
 15

SCR # 56
 0 (FLOPPY - APPENDAGE OF 53)
 1 : SKEW (LIKE BEFORE, ONLY HANDLE 2ND DRIVE)
 2 DUP 1975 > IF 1976 - SKEW1 SWAP 77 + SWAP
 3 ELSE SKEW1 THEN ;
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

71.

72.

XII. Glossary

The Forth Implementation Team glossary for the common language model is

reprinted (from the Installation Manual). Words which are in FORTH.MAC but not

in the common language glossary are listed below. Most were added for convenience

on this particular system.

=CELLS n1 --- n1
Add 1 if necessary to make even number.

?ALIGN ---
Force even address in dictionary.

BYE ---
Return to the operating system.

C/L --- n1
Number of characters per line (F.I.G. Model).

CURRENT ---
Vocabulary into which new definitions are compiled
(F.I.G. Model).

I/O addr block# flag ---
Read or write 512-byte block, handle errors.

OCTAL ---
Set number base to octal.

U. n1 ---
Unsigned print.

U< n1 ---
Unsigned less-than test.

XI/O addr block# flag --- report
Read or write 512-byte block, return error report.

73.

fig-FORTH GLOSSARY

This glossary contains a11 of the word defini-
tions in Release 1 of fig-FORTH. The definitions
are presented in the order of their ascii sort.

The first line of each entry shows a symbolic
description of the action of the procedure on
the parameter stack. The symbols indicate the
order in which input parameters have been placed
on the stack. Three dashes "---" indicate the
execution point; any parameters left on the
stack are listed. In this notation, the top of
the stack is to the right.

The symbols include:

addr memory address

b 8 bit byte (i.e. hi 8 bits zero)

c 7 bit ascii character (hi 9 bits zero)

d 32 bit signed double integer, most signi-
ficant portion with sign on top of stack

f boolean flag. 0=false, non-zero=true

ff boolean false flag=0

n 16 bit signed integer number

u 16 bit unsigned integer

tf boolean true flag=non-zero

The capital letters on the right show definition
characteristics:

C May only be used within a colon defini-
tion. A digit indicates number of mem-
ory addresses used, if other than one.

E Intended for execution only.

L0 Level Zero definition of FORTH-78.

L1 Level One definition of FORTH-78.

P Has precedence bit set. Will execute
even when compiling.

U A user variable.

Unless otherwise noted, all references to
numbers are for 16 bit signed integers. On
8 bit data bus computers, the high byte of a
number is on top of the stack, with the sign
in the leftmost bit. For 32 bit signed double
numbers, the most significant part (with the
sign) is on top.

All arithmetic is implicitly 16 bit signed
integer math, with error and under-flow
indication unspecified.

74.

! n addr --- L0
Store 16 bits of n at address.
Pronounced “store”.

!CSP
Save the stack position in CSP. Used as
part of the compiler security.

d1 --- d2 L0
Generate from a double number d1, the
next ascii character which is placed in
an output string. Result d2 is the
quotient after division by BASE, and is
maintained for further processing. Used
between <# and #>. See #S.

#> d --- addr count L0
Terminates numeric output conversion by
dropping d, leaving the text address and
character count suitable for TYPE.

#S d1 --- d2 L0
Generates ascii text in the text output
buffer, by the use of #, until a zero
double number n2 results. Used between
<# and #>.

' --- addr P,L0
Used in the form:
 ' nnnn
Leaves the parameter field address of
dictionary word nnnn. As a complier
directive,executes in a colon-definition
to compile the address as a literal. If
the word is not found after a search of
CONTEXT and CURRENT, an appropriate
error message is given. Pronounced
"tick".

(P,L0
Used in the form:
 (cccc)
Ignore a comment that will be delimited
by a right parenthesis on the same line.
May occur during execution or in a
colon-definition. A blank after the
leading parenthesis is required.

(.") C+
The run-time procedure, compiled by ."
which transmits the following in-line
text to the selected output device.
See ."

(;CODE) C
The run-time procedure, compiled by
;CODE, that rewrites the code field of
the most recently defined word to point
to the following machine code sequence.
See ;CODE.

(+LOOP) n --- C2
The run-time procedure compiled by
+LOOP, which increments the loop index
by n and tests for loop completion. See
+LOOP.

(ABORT)
Executes after an error when WARNING is
-1. This word normally executes ABORT,
but may be altered (with care) to a
user's alternative procedure.

(DO) C
The run-time procedure compiled by DO
which moves the loop control parameters
to the return stack. See DO.

(FIND) addr1 addr2 --- pfa b tf (ok)
 addr1 addr2 --- ff (bad)
Searches the dictionary starting at the
name field address addr2, matching to
the text at addr1. Returns parameter
field address, length byte of name field
and boolean true for a good match. If
no match is found, only a boolean false
is left.

(LINE) n1 n2 --- addr count
Convert the line number n1 and the
screen n2 to the disc buffer address
containing the data. A count of 64
indicates the full line text length.

(LOOP) C2
The run-time procedure compiled by LOOP
which increments the loop index and
tests for loop completion. See LOOP.

(NUMBER) d1 addr1 --- d2 addr2
Convert the ascii text beginning at
addr1+1 with regard to BASE. The new
value is accumulated into double number
d1, being left as d2. addr2 is the
address of the first unconvertible
digit. Used by NUMBER.

* n1 n2 --- prod L0
Leave the signed product of two signed
numbers.

*/ n1 n2 n3 --- n4 L0
Leave the ratio n4 = n1*n2/n3
where all are signed numbers. Retention
of an intermediate 31 bit product per-
mits greater accuracy than would be
available with the sequence:
 n1 n2 * n3 /

*/MOD n1 n2 n3 --- n4 n5 L0
Leave the quotient n5 and remainder n4
of the operation n1*n2/n3. A 31 bit
intermediate product is used as for */.

75.

+ n1 n2 --- sum L0
Leave the sum of n1+n2.

+! n addr --- L0
Add n to the value at the address.
Pronounced "plus-store".

+- n1 n2 --- n3
Apply the sign of n2 to n1, which is
left as n3.

+BUF addr1 --- addr2 f
Advance the disc buffer address addr1 to
the address of the next buffer addr2.
Boolean f is false when addr2 is the
buffer presently pointed to by variable
PREV.

+LOOP n1 --- (run)
 addr n2 --- (compile) P,C2,L0
Used in a colon-definition in the form:
 DO ... n1 +LOOP
At run-time, +LOOP selectively controls
branching back to the corresponding DO
based on n1, the loop index and the loop
limit. The signed increment n1 is added
to the index and the total compared to
the limit. The branch back to DO occurs
until the new index is equal to or
greater than the limit (n1>0), or until
the new index is equal to or less than
the limit (n1<0). Upon exiting the
loop, the parameters are discarded and
execution continues ahead.

At compiled time, +LOOP compiles the
run-time word (+LOOP) and the branch
offset computed from HERE to the address
left on the stack by DO. n2 is used for
compile time error checking.

+ORIGIN n --- addr
Leave the memory address relative by n
to the origin parameter area. n is the
minimum address unit, either byte or
word. This definition is used to access
or modify the boot-up parameters at the
origin area.

, n --- L0
Store n into the next available
dictionary memory cell, advancing the
dictionary pointer. (comma)

- n1 n2 --- diff L0
Leave the difference of n1-n2.

--> P,L0
Continue interpretation with the next
disc screen. (pronounced next-screen).

-DUP n1 -- n1 (if zero)
 n1 -- n1 n1 (if non-zero) L0
Reproduce n1 only if it is non-zero.
This is usually used to copy a value
just before IF, to eliminate the need
for an ELSE part to drop it.

-FIND --- pfa b tf (found)
 --- ff (not found)
Accepts the next text word (delimited by
blanks) in the input stream to HERE, and
searches the CONTEXT and then CURRENT
vocabularies for a matching entry. If
found, the dictionary entry's parameter
field address, its length byte, and a
boolean true is left. Otherwise, only a
boolean false is left.

-TRAILING addr n1 --- addr n2
Adjusts the character count n1 of a text
string beginning address to suppress the
output of trailing blanks. I.e. the
characters at addr+n1 to addr+n2 are
blanks.

. n --- L0
Print a number from a signed 16 bit
two's complement value, converted
according to the numeric BASE. A trail-
ing blank follows. Pronounced "dot".

." P,L0
Used in the form:
 ." cccc"
Compiles an in-line string cccc
(delimited by the trailing ") with an
execution procedure to transmit the text
to the selected output device. If exe-
cuted outside a definition, ." will
immediately print the text until the
final ". The maximum number of
characters may be an installation
dependent value. See (.").

.LINE line scr ---
Print on the terminal device, a line of
text from the disc by its line and
screen number. Trailing blanks are
suppressed.

.R n1 n2 ---
Print the number n1 right aligned in a
field whose width is n2. No following
blank is printed.

/ n1 n2 --- quot L0
Leave the signed quotient of n1/n2.

/MOD n1 n2 --- rem quot L0
Leave the remainder and signed quotient
of n1/n2. The remainder has the sign of
the dividend.

76.

0 1 2 3 --- n
These small numbers are used so often
that it is attractive to define them by
name in the dictionary as constants.

0< n --- f L0
Leave a true flag if the number is less
than zero (negative), otherwise leave a
false flag.

0= n --- f L0
Leave a true flag if the number is equal
to zero, otherwise leave a false flag.

0BRANCH f --- C2
The run-time procedure to conditionally
branch. If f is false (zero), the fol-
lowing in-line parameter is added to the
interpretive pointer to branch ahead or
back. Compiled by IF, UNTIL, and WHILE.

1+ n1 --- n2 L1
Increment n1 by 1.

2+ n1 --- n2
Leave n1 incremented by 2.

: P,E,L0
Used in the form called a colon-
definition:
 : cccc ... ;
Creates a dictionary entry defining cccc
as equivalent to the following sequence
of Forth word definitions '...' until
the next ';' or ';CODE'. The compiling
process is done by the text interpreter
as long as STATE is non-zero. Other
details are that the CONTEXT vocabulary
is set to the CURRENT vocabulary and
that words with the precedence bit set
(P) are executed rather than being
compiled.

; P,C,L0
Terminate a colon-definition and stop
further compilation. Compiles the run-
time ;S.

;CODE P,C,L0
Used in the form:
 : cccc ;CODE
 assembly mnemonics
Stop compilation and terminate a new
defining word cccc by compiling (;CODE).
Set the CONTEXT vocabulary to ASSEMBLER,
assembling to machine code the following
mnemonics.

When cccc later executes in the form:
 cccc nnnn
the word nnnn will be created with its
execution procedure given by the machine
code following cccc. That is, when nnnn

is executed, it does so by jumping to
the code after nnnn. An existing
defining word must exist in cccc prior
to ;CODE.

;S P,L0
Stop interpretation of a screen. ;S is
also the run-time word compiled at the
end of a colon-definition which returns
execution to the calling procedure.

< n1 n2 --- f L0
Leave a true flag if n1 is less than n2;
otherwise leave a false flag.

<# L0
Setup for pictured numeric output
formatting using the words:
 <# # #S SIGN #>
The conversion is done on a double
number producing text at PAD.

<BUILDS C,L0
Used within a colon-definition:
 : cccc <BUILDS ...
 DOES> ... ;
Each time cccc is executed, <BUILDS
defines a new word with a high-level
execution procedure. Executing cccc in
the form:
 cccc nnnn
uses <BUILDS to create a dictionary
entry for nnnn with a call to the DOES>
part for nnnn. When nnnn is later
executed, it has the address of its
parameter area on the stack and executes
the words after DOES> in cccc. <BUILDS
and DOES> allow run-time procedures to
be written in high-level rather than in
assembler code (as required by ;CODE).

= n1 n2 --- f L0
Leave a true flag if n1=n2; otherwise
leave a false flag.

> n1 n2 --- f L0
Leave a true flag if n1 is greater than
n2; otherwise a false flag.

>R n --- C,L0
Remove a number from the computation
stack and place as the most accessible
on the return stack. Use should be
balanced with R> in the same definition.

? addr --- L0
Print the value contained at the address
in free format according to the current
base.

?COMP
Issue error message if not compiling.

77.

?CSP
Issue error message if stack position
differs from value saved in CSP.

?ERROR f n ---
Issue an error message number n, if the
boolean flag is true.

?EXEC
Issue an error message if not executing.

?LOADING
Issue an error message if not loading.

?PAIRS n1 n2 ---
Issue an error message if n1 does not
equal n2. The message indicates that
compiled conditionals do not match.

?STACK
Issue an error message if the stack is
out of bounds. This definition may be
installation dependent.

?TERMINAL --- f
Perform a test of the terminal keyboard
for actuation of the break key. A true
flag indicates actuation. This defini-
tion is installation dependent.

@ addr --- n L0
Leave the 16 bit contents of address.

ABORT L0
Clear the stacks and enter the execution
state. Return control to the operator's
terminal, printing a message appropriate
to the installation.

ABS n --- u L0
Leave the absolute value of n as u.

AGAIN addr n --- (compiling) P,C2,L0
Used in a colon-definition in the form:
 BEGIN ... AGAIN
At run-time, AGAIN forces execution to
return to corresponding BEGIN. There is
no effect on the stack. Execution can-
not leave this loop (unless R> DROP
is executed one level below).

At compile time, AGAIN compiles BRANCH
with an offset from HERE to addr. n is
used for compile-time error checking.

ALLOT n --- L0
Add the signed number to the dictionary
pointer DP. May be used to reserve
dictionary space or re-origin memory.
n is with regard to computer address
type (byte or word).

AND n1 n2 --- n3 L0
Leave the bitwise logical and of n1 and
n2 as n3.

B/BUF --- n
This constant leaves the number of bytes
per disc buffer, the byte count read
from disc by BLOCK.

B/SCR --- n
This constant leaves the number of
blocks per editing screen. By conven-
tion, an editing screen is 1024 bytes
organized as 16 lines of 64 characters
each.

BACK addr ---
Calculate the backward branch offset
from HERE to addr and compile into the
next available dictionary memory
address.

BASE --- addr U,L0
A user variable containing the current
number base used for input and output
conversion.

BEGIN --- addr n (compiling) P,L0
Occurs in a colon-definition in form:
 BEGIN ... UNTIL
 BEGIN ... AGAIN
 BEGIN ... WHILE ... REPEAT
At run-time, BEGIN marks the start of a
sequence that may be repetitively exe-
cuted. It serves as a return point from
the corresponding UNTIL, AGAIN or
REPEAT. When executing UNTIL, a return
to BEGIN will occur if the top of the
stack is false; for AGAIN and REPEAT a
return to BEGIN always occurs.

At compile time BEGIN leaves its return
address and n for compiler error check-
ing.

BL --- c
A constant that leaves the ascii value
for "blank".

BLANKS addr count ---
Fill an area of memory beginning at addr
with blanks.

BLK --- addr U,L0
A user variable containing the block
number being interpreted. If zero,
input is being taken from the terminal
input buffer.

78.

BLOCK n --- addr L0
Leave the memory address of the block
buffer containing block n. If the block
is not already in memory, it is trans-
ferred from disc to whichever buffer was
least recently written. If the block
occupying that buffer has been marked as
updated, it is re-written to disc before
block n is read into the buffer. See
also BUFFER, R/W, UPDATE, FLUSH.

BLOCK-READ
BLOCK-WRITE These are the preferred names for

the installation dependent code to read
and write one block to the disc.

BRANCH C2,L0
The run-time procedure to uncondition-
ally branch. An in-line offset is added
to the interpretive pointer IP to branch
ahead or back. BRANCH is compiled by
ELSE, AGAIN, REPEAT.

BUFFER n --- addr
Obtain the next memory buffer, assigning
it to block n. If the contents of the
buffer are marked as updated, it is
written to the disc. The block is not
read from the disc. The address left is
the first cell within the buffer for
data storage.

C! b addr ---
Store 8 bits at address. On word
addressing computers, further specifi-
cation is necessary regarding byte
addressing.

C, b ---
Store 8 bits of b into the next avail-
able dictionary byte, advancing the
dictionary pointer. This is only avail-
able on byte addressing computers, and
should be used with caution on byte
addressing minicomputers.

C@ addr --- b
Leave the 8 bit contents of memory
address. On word addressing computers,
further specification is needed regard-
ing byte addressing.

CFA pfa --- cfa
Convert the parameter field address of
a definition to its code field address.

CMOVE from to count ---
Move the specified quantity of bytes
beginning at address from to address to.
The contents of address from are moved
first proceeding toward high memory.
Further specification is necessary on
word addressing computers.

COLD
The cold start procedure to adjust the
dictionary pointer to the minimum stan-
dard and restart via ABORT. May be
called from the terminal to remove
application programs and restart.

COMPILE C2
When the word containing COMPILE
executes, the execution address of the
word following COMPILE is copied
(compiled) into the dictionary. This
allows specific compilation situations
to be handled in addition to simply
compiling an execution address (which
the interpreter already does).

CONSTANT n --- L0
A defining word used in the form:
 n CONSTANT cccc
to create word cccc, with its parameter
field containing n. When cccc is later
executed, it will push the value of n to
the stack.

CONTEXT --- addr U,L0
A user variable containing a pointer to
the vocabulary within which dictionary
searches will first begin.

COUNT addr1 --- addr2 n L0
Leave the byte address addr2 and byte
count n of a message text beginning at
address addr1. It is presumed that the
first byte at addr1 contains the text
byte count and the actual text starts
with the second byte. Typically COUNT
is followed by TYPE.

CR L0
Transmit a carriage return and line feed
to the selected output device.

CREATE
A defining word used in the form:
 CREATE cccc
by such words as CODE and CONSTANT to
create a dictionary header for a Forth
definition. The code field contains the
address of the word's parameter field.
The new word is created in the CURRENT
vocabulary.

CSP --- addr U
A user variable temporarily storing the
stack pointer position, for compilation
error checking.

D+ d1 d2 --- dsum
Leave the double number sum of two
double numbers.

79.

D+- d1 n --- d2
Apply the sign of n to the double number
d1, leaving it as d2.

D. d --- L1
Print a signed double number from a 32
bit two's complement value. The high-
order 16 bits are most accessible on the
stack. Conversion is performed accord-
ing to the current BASE. A blank fol-
lows. Pronounced D-dot.

D.R d n ---
Print a signed double number d right
aligned in a field n characters wide.

DABS d --- ud
Leave the absolute value ud of a double
number.

DECIMAL L0
Set the numeric conversion BASE for
decimal input-output.

DEFINITIONS L1
Used in the form:
 cccc DEFINITIONS
Set the CURRENT vocabulary to the
CONTEXT vocabulary. In the example,
executing vocabulary name cccc made it
the CONTEXT vocabulary and executing
DEFINITIONS made both specify vocabulary
cccc.

DIGIT c n1 --- n2 tf (ok)
 c n1 --- ff (bad)
Converts the ascii character c (using
base n1) to its binary equivalent n2,
accompanied by a true flag. If the
conversion is invalid, leaves only a
false flag.

DLIST
List the names of the dictionary entries
in the CONTEXT vocabulary.

DLITERAL d --- d (executing)
 d --- (compiling) P

If compiling, compile a stack double
number into a literal. Later execution
of the definition containing the literal
will push it to the stack. If execut-
ing, the number will remain on the
stack.

DMINUS d1 --- d2
Convert d1 to its double number two's
complement.

DO n1 n2 --- (execute)
 addr n --- (compile) P,C2,L0
Occurs in a colon-definition in form:
 DO ... LOOP
 DO ... +LOOP
At run time, DO begins a sequence with
repetitive execution controlled by a
loop limit n1 and an index with initial
value n2. DO removes these from the
stack. Upon reaching LOOP the index is
incremented by one. Until the new index
equals or exceeds the limit, execution
loops back to just after DO; otherwise
the loop parameters are discarded and
execution continues ahead. Both n1 and
n2 are determined at run-time and may be
the result of other operations. Within
a loop 'I' will copy the current value
of the index to the stack. See I, LOOP,
+LOOP, LEAVE.

When compiling within the colon-defini-
tion, DO compiles (DO), leaves the
following address addr and n for later
error checking.

DOES> L0
A word which defines the run-time action
within a high-level defining word.
DOES> alters the code field and first
parameter of the new word to execute the
sequence of compiled word addresses
following DOES>. Used in combination
with <BUILDS. When the DOES> part
executes it begins with the address of
the first parameter of the new word on
the stack. This allows interpretation
using this area or its contents. Typi-
cal uses include the Forth assembler,
multi-dimensional arrays, and compiler
generation.

DP --- addr U,L
A user variable, the dictionary pointer,
which contains the address of the next
free memory above the dictionary. The
value may be read by HERE and altered by
ALLOT.

DPL --- addr U,L0
A user variable containing the number of
digits to the right of the decimal on
double integer input. It may also be
used to hold output column location of a
decimal point, in user generated format-
ting. The default value on single
number input is -1.

80.

DR0 Installation dependent commands to
DR1 select disc drives, by presetting

OFFSET. The contents of OFFSET are
added to the block number in BLOCK to
allow for this selection. Offset is
suppressed for error text so that it
may always originate from drive 0.

DROP n --- L0
Drop the number from the stack.

DUMP addr a --- L0
Print the contents of n memory locations
beginning at addr. Both addresses and
contents are shown in the current
numeric base.

DUP n --- n n L0
Duplicate the value on the stack.

ELSE addr1 n1 --- addr2 n2
 (compiling) P,C2,L0
Occurs within a colon-definition in the
form:
 IF ... ELSE ... ENDIF
At run-time, ELSE executes after the
true part following IF. ELSE forces
execution to skip over the following
false part and resumes execution after
the ENDIF. It has no stack.

At compile-time ELSE emplaces BRANCH
reserving a branch offset, leaves the
address addr2 and n2 for error testing.
ELSE also resolves the pending forward
branch from IF by calculating the offset
from addr1 to HERE and storing at addr1.

EMIT c --- L0
Transmit ascii character c to the
selected output device. OUT is
incremented for each character output.

EMPTY-BUFFERS L0
Mark all block-buffers as empty, not
necessarily affecting the contents.
Updated blocks are not written to the
disc. This is also an initialization
procedure before first use of the disc.

ENCLOSE addr1 c ---
 addr1 n1 n2 n3
The text scanning primitive used by
WORD. From the text address addr1 and
an ascii delimiting character c, is
determined the byte offset to the first
non-delimiter character n1, the offset
to the first delimiter after the text
n2, and the offset to the first charac-
ter not included. This procedure will
not process past an ascii 'null', treat-
ing it as an unconditional delimiter.

END P,C2,L0
This is an 'alias' or duplicate
definition for UNTIL.

ENDIF addr n --- (compile) P,C0,L0
Occurs in a colon-definition in form:
 IF ... ENDIF
 IF ... ELSE ... ENDIF
At run-time, ENDIF serves only as the
destination of a forward branch from IF
or ELSE. It marks the conclusion of the
conditional structure. THEN is another
name for ENDIF. Both names are sup-
ported in fig-FORTH. See also IF and
ELSE.

At compile-time, ENDIF computes the
forward branch offset from addr to HERE
and stores it at addr. n is used for
error tests.

ERASE addr n ---
Clear a region of memory to zero from
addr over n addresses.

ERROR line --- in blk
Execute error notification and restart
of system. WARNING is first examined.
If 1, the text of line n, relative to
screen 4 of drive 0, is printed. This
line number may be positive or negative,
and beyond just screen 4. If WARNING=0,
n is just printed as a message number
(non disc installation). If WARNING is
-1, the definition (ABORT) is executed,
which executes the system ABORT. The
user may cautiously modify this execu-
tion by altering (ABORT). fig-FORTH
saves the contents of IN and BLK to
assist in determining the location of
the error. Final action is execution
of QUIT.

EXECUTE addr ---
Execute the definition whose code field
address is on the stack. The code field
address is also called the compilation
address.

EXPECT addr count --- L0
Transfer characters from the terminal to
address, until a "return" or the count
of characters have been received. One
or more nulls are added at the end of
the text.

FENCE --- addr U
A user variable containing an address
below which FORGETting is trapped. To
forget below this point the user must
alter the contents of FENCE.

81.

FILL addr quan b ---
Fill memory at the address with the
specified quantity of bytes b.

FIRST --- n
A constant that leaves the address of
the first (lowest) block buffer.

FLD --- addr U
A user variable for control of number
output field width. Presently unused in
fig-FORTH.

FORGET E,L0
Executed in the form:
 FORGET cccc
Deletes definition named cccc from the
dictionary with all entries physically
following it. In fig-FORTH, an error
message will occur if the CURRENT and
CONTEXT vocabularies are not currently
the same.

FORTH P,L1
The name of the primary vocabulary.
Execution makes FORTH the CONTEXT
vocabulary. Until additional user
vocabularies are defined, new user
definitions become a part of FORTH.
FORTH is immediate, so it will execute
during the creation of a colon-defini-
tion, to select this vocabulary at
compile time.

HERE --- addr L0
Leave the address of the next available
dictionary location.

HEX L0
Set the numeric conversion base to
sixteen (hexadecimal).

HLD --- addr L0
A user variable that holds the address
of the latest character of text during
numeric output conversion.

HOLD c --- L0
Used between <# and #> to insert an
ascii character into a pictured numeric
output string. E.g. 2E HOLD will
place a decimal point.

I --- n C,L0
Used within a DO-LOOP to copy the loop
index to the stack. Other use is imple-
mentation dependent. See R.

ID. addr ---
Print a definition's name from its name
field address.

IF f --- (run-time)
 --- addr n (compile) P,C2,L0
Occurs in a colon-definition in form:
 IF (tp) ... ENDIF
 IF (tp) ... ELSE (fp) ... ENDIF
At run-time, IF selects execution based
on a boolean flag. If f is true (non-
zero), execution continues ahead thru
the true part. If f is false (zero),
execution skips till just after ELSE to
execute the false part. After either
part, execution resumes after ENDIF.
ELSE and its false part are optional; if
missing, false execution skips to just
after ENDIF.

At compile-time IF compiles 0BRANCH and
reserves space for an offset at addr.
addr and n are used later for resolution
of the offset and error testing.

IMMEDIATE
Mark the most recently made definition
so that when encountered at compile
time, it will be executed rather than
being compiled. I.e. the precedence bit
in its header is set. This method
allows definitions to handle unusual
compiling situations, rather than build
them into the fundamental compiler. The
user may force compilation of an
immediate definition by preceding it
with [COMPILE].

IN --- addr L0
A user variable containing the byte
offset within the current input text
buffer (terminal or disc) from which the
next text will be accepted. WORD uses
and moves the value of IN.

INDEX from to ---
Print the first line of each screen over
the range from, to. This is used to
view the comment lines of an area of
text on disc screens.

INTERPRET
The outer text interpreter which sequen-
tially executes or compiles text from
the input stream (terminal or disc)
depending on STATE. If the word name
cannot be found after a search of
CONTEXT and then CURRENT it is converted
to a number according to the current
base. That also-failing, an error mes-
sage echoing the name with a " ?" will
be given. Text input will be taken ac-
cording to the convention for WORD. If a
decimal point is found as part of a num-
ber, a double number value will be left.
The decimal point has no other purpose
than to force this action. See NUMBER.

82.

KEY --- c L0
Leave the ascii value of the next
terminal key struck.

LATEST --- addr
Leave the name field address of the
topmost word in the CURRENT vocabulary.

LEAVE C,L0
Force termination of a DO-LOOP at the
next opportunity by setting the loop
limit equal to the current value of the
index. The index itself remains un-
changed, and execution proceeds normally
until LOOP or +LOOP is encountered.

LFA pfa --- lfa
Convert the parameter field address of a
dictionary definition to its link field
address.

LIMIT --- n
A constant leaving the address just
above the highest memory available for
a disc buffer. Usually this is the
highest system memory.

LIST n --- L0
Display the ascii text of screen n on
the selected output device. SCR
contains the screen number during and
after this process.

LIT --- n C2,L0
Within a colon-definition, LIT is
automatically compiled before each 16
bit literal number encountered in input
text. Later execution of LIT causes the
contents of the next dictionary address
to be pushed to the stack.

LITERAL n --- (compiling) P,C2,L0
If compiling, then compile the stack
value n as a 16 bit literal. This
definition is immediate so that it will
execute during a colon definition. The
intended use is:
 : xxx [calculate] LITERAL ;
Compilation is suspended for the compile
time calculation of a value. Compila-
tion is resumed and LITERAL compiles
this value.

LOAD n --- L0
Begin interpretation of screen n.
Loading will terminate at the end of
the screen or at ;S. See ;S and -->.

LOOP addr n --- (compiling) P,C2,L0
Occurs in a colon-definition in form:
 DO ... LOOP
At run-time, LOOP selectively controls
branching back to the corresponding DO
based on the loop index and limit. The
loop index is incremented by one and
compared to the limit. The branch back
to DO occurs until the index equals or
exceeds the limit; at that time, the
parameters are discarded and execution
continues ahead.

At compile-time, LOOP compiles (LOOP)
and uses addr to calculate an offset
to DO. n is used for error testing.

M* n1 n2 --- d
A mixed magnitude math operation which
leaves the double number signed product
of two signed numbers.

M/ d n1 --- n2 n3
A mixed magnitude math operator which
leaves the signed remainder n2 and
signed quotient n3, from a double number
dividend and divisor n1. The remainder
takes its sign from the dividend.

M/MOD ud1 u2 --- u3 ud4
An unsigned mixed magnitude math opera-
tion which leaves a double quotient ud4
and remainder u3, from a double dividend
ud1 and single divisor u2.

MAX n1 n2 --- max L0
Leave the greater of two numbers.

MESSAGE n ---
Print on the selected output device the
text of line n relative to screen 4 of
drive 0. n may be positive or negative.
MESSAGE may be used to print incidental
text such as report headers. If WARNING
is zero, the message will simply be
printed as a number (disc unavailable).

MIN n1 n2 --- min L0
Leave the smaller of two numbers.

MINUS n1 --- n2 L0
Leave the two's complement of a number.

MOD n1 n2 --- mod L0
Leave the remainder of n1/n2, with the
same sign as n1.

MON
Exit to the system monitor, leaving a
re-entry to Forth, if possible.

83.

MOVE addr1 addr2 n ---
Move the contents of n memory cells (16
bit contents) beginning at addr1 into n
cells beginning at addr2. The contents
of addr1 are moved first. This defini-
tion is appropriate on word addressing
computers.

NEXT
This is the inner interpreter that uses
the interpretive pointer IP to execute
compiled Forth definitions. It is not
directly executed but is the return
point for all code procedures. It acts
by fetching the address pointed by IP,
storing this value in register W. It
then jumps to the address pointed to by
the address pointed to by W. W points
to the code field of a definition which
contains the address of the code which
executes for that definition. This
usage of indirect threaded code is a
major contributor to the power, porta-
bility, and extensibility of Forth.
Locations of IP and W are computer
specific.

NFA pfa --- nfa
Convert the parameter field address of a
definition to its name field.

NUMBER addr --- d
Convert a character string left at addr
with a preceding count, to a signed
double number, using the current numeric
base. If a decimal point is encountered
in the text, its position will be given
in DPL, but no other effect occurs. If
numeric conversion is not possible, an
error message will be given.

OFFSET --- addr U
A user variable which may contain a
block offset to disc drives. The con-
tents of OFFSET are added to the stack
number by BLOCK. Messages by MESSAGE
are independent of OFFSET. See BLOCK,
DR0, DR1, MESSAGE.

OR n1 n2 --- or L0
Leave the bit-wise logical or of two
16 bit values.

OUT --- addr U
A user variable that contains a value
incremented by EMIT. The user may alter
and examine OUT to control display for-
matting.

OVER n1 n2 --- n1 n2 n1 L0
Copy the second stack value, placing it
as the new top.

PAD --- addr L0
Leave the address of the text output
buffer, which is a fixed offset above
HERE.

PFA nfa --- pfa
Convert the name field address of a
compiled definition to its parameter
field address.

POP
The code sequence to remove a stack
value and return to NEXT. POP is not
directly executable, but is a Forth re-
entry point after machine code.

PREV --- addr
A variable containing the address of the
disc buffer most recently referenced.
The UPDATE command marks this buffer to
be later written to disc.

PUSH
This code sequence pushes machine reg-
isters to the computation stack and
returns to NEXT. It is not directly
executable, but is a Forth re-entry
point after machine code.

PUT
This code sequence stores machine
register contents over the topmost
computation stack value and returns to
NEXT. It is not directly executable,
but is a Forth re-entry point after
machine code.

QUERY
Input 80 characters of text (or until a
"return") from the operator's terminal.
Text is positioned at the address con-
tained in TIB with IN set to zero.

QUIT L1
Clear the return stack, stop compila-
tion, and return control to the
operator's terminal. No message is
given.

R --- n
Copy the top of the return stack to the
computation stack.

R# --- addr U
A user variable which may contain the
location of an editing cursor, or other
file related function.

84.

R/W addr blk f ---
The fig-FORTH standard disc read-write
linkage. addr specifies the source or
destination block buffer, blk is the
sequential number of the referenced
block, and f is a flag for f=0 write and
f=1 read. R/W determines the location
on mass storage, performs the read-write
and performs any error checking.

R> --- n L0
Remove the top value from the return
stack and leave it on the computation
stack. See >R and R.

R0 --- addr U
A user variable containing the initial
location of the return stack. Pro-
nounced R-zero. See RP!

REPEAT addr n --- (compiling) P,C2
Used within a colon-definition in the
form:
 BEGIN ... WHILE ... REPEAT
At run-time, REPEAT forces an uncondi-
tional branch back to just after the
corresponding BEGIN.

At compile-time, REPEAT compiles BRANCH
and the offset from HERE to addr. n is
used for error testing.

ROT n1 n2 n3 --- n2 n3 n1 L0
Rotate the top three values on the
stack, bringing the third to the top.

RP!
A computer dependent procedure to ini-
tialize the return stack pointer from
user variable R0.

S->D n --- d
Sign extend a single number to form a
double number.

S0 --- addr U
A user variable that contains the
initial value for the stack pointer.
Pronounced S-zero. See SP!

SCR --- addr U
A user variable containing the screen
number most recently referenced by LIST.

SIGN n d --- d L0
Stores an ascii "-" sign just before a
converted numeric output string in the
text output buffer when n is negative.
n is discarded, but double number d is
maintained. Must be used between <#
and #>.

SMUDGE
Used during word definition to toggle
the "smudge bit" in a definition's name
field. This prevents an uncompleted
definition from being found during
dictionary searches, until compiling is
completed without error.

SP!
A computer dependent procedure to
initialize the stack pointer from S0.

SP@ --- addr
A computer dependent procedure to return
the address of the stack position to the
top of the stack, as it was before SP@
was executed (e.g. 1 2 SP@ @ . . .
would type 2 2 1).

SPACE L0
Transmit an ascii blank to the output
device.

SPACES n --- L0
Transmit n ascii blanks to the output
device.

STATE --- addr L0,U
A user variable containing the compila-
tion state. A non-zero value indicates
compilation. The value itself may be
implementation dependent.

SWAP n1 n2 --- n2 n1 L0
Exchange the top two values on the
stack.

TASK
A no-operation word which can mark the
boundary between applications. By
forgetting TASK and re-compiling, an
application can be discarded in its
entirety.

THEN P,C0,L0
An alias for ENDIF.

TIB --- addr U
A user variable containing the address
of the terminal input buffer.

TOGGLE addr b ---
Complement the contents of addr by the
bit pattern b.

85.

TRAVERSE addr1 n --- addr2
Move across the name field of a fig-
FORTH variable length name field. addr1
is the address of either the length byte
or the last letter. If n=1, the motion
is toward hi memory; if n=-1, the motion
is toward low memory. The addr2 result-
ing is the address of the other end of
the name.

TRIAD scr ---
Display on the selected output device
the three screens which include that
numbered scr, beginning with a screen
evenly divisible by three. Output is
suitable for source text records, and
includes a reference line at the bottom
taken from line 15 of screen 4.

TYPE addr count --- L0
Transmit count characters from addr to
the selected output device.

U* u1 u2 --- ud
Leave the unsigned double number product
of two unsigned numbers.

U/ ud u1 --- u2 u3
Leave the unsigned remainder u2 and
unsigned quotient u3 from the unsigned
double dividend ud and unsigned divisor
u1.

UNTIL f --- (run-time)
 addr n --- (compile) P,C2,L0
Occurs within a colon-definition in the
form:
 BEGIN ... UNTIL
At run-time, UNTIL controls the condi-
tional branch back to the corresponding
BEGIN. If f is false, execution returns
to just after BEGIN; if true, execution
continues ahead.

At compile-time, UNTIL compiles
(0BRANCH) and an offset from HERE to
addr. n is used for error tests.

UPDATE L0

Marks the most recently referenced block
(pointed to by PREV) as altered. The
block will subsequently be transferred
automatically to disc should its buffer
be required for storage of a different
block.

USE --- addr
A variable containing the address of the
block buffer to use next, as the least
recently written.

USER n --- L0
A defining word used in the form:
 n USER cccc
which creates a user variable cccc. The
parameter field of cccc contains n as a
fixed offset relative to the user point-
er register UP for this user variable.
When cccc is later executed, it places
the sum of its offset and the user area
base address on the stack as the storage
address of that particular variable.

VARIABLE E,L0
A defining word used in the form:
 n VARIABLE cccc
When VARIABLE is executed, it creates
the definition cccc with its parameter
field initialized to n. When cccc is
later executed, the address of its
parameter field (containing n) is left
on the stack, so that a fetch or store
may access this location.

VOC-LINK --- addr U
A user variable containing the address
of a field in the definition of the most
recently created vocabulary. All
vocabulary names are linked by these
fields to allow control for FORGETting
thru multiple vocabularies.

VOCABULARY E,L1
A defining word used in the form:
 VOCABULARY cccc
to create a vocabulary definition cccc.
Subsequent use of cccc will make it the
CONTEXT vocabulary which is searched
first by INTERPRET. The sequence "cccc
DEFINITIONS" will also make cccc the
CURRENT vocabulary into which new defi-
nitions are placed.

In fig-FORTH, cccc will be so chained as
to include all definitions of the vocab-
ulary in which cccc is itself defined.
All vocabularies ultimately chain to
Forth. By convention, vocabulary names
are to be declared IMMEDIATE. See
VOC-LINK.

VLIST
List the names of the definitions in the
context vocabulary. "Break" will ter-
minate the listing.

86.

WARNING --- addr U
A user variable containing a value
controlling messages. If = 1 disc is
present, and screen 4 of drive 0 is the
base location for messages. If = 0, no
disc is present and messages will be
presented by number. If = -1, execute
(ABORT) for a user specified procedure.
See MESSAGE, ERROR.

WHILE f --- (run-time)
 ad1 n1 --- ad1 n1 ad2 n2 P,C2
Occurs in a colon-definition in the
form:
 BEGIN ... WHILE (tp) ... REPEAT
At run-time, WHILE selects conditional
execution based on boolean flag f. If
f is true (non-zero), WHILE continues
execution of the true part thru to
REPEAT, which then branches back to
BEGIN. If f is false (zero), execution
skips to just after REPEAT, exiting the
structure.

At compile time, WHILE emplaces
(0BRANCH) and leaves ad2 of the reserved
offset. The stack values will be
resolved by REPEAT.

WIDTH --- addr U
In fig-FORTH, a user variable containing
the maximum number of letters saved in
the compilation of a definition's name.
It must be 1 thru 31, with a default
value of 31. The name character count
and its natural characters are saved, up
to the value in WIDTH. The value may be
changed at any time within the above
limits.

WORD c --- L0
Read the next text characters from the
input stream being interpreted, until a
delimiter c is found, storing the packed
character string beginning at the dic-
tionary buffer HERE. WORD leaves the
character count in the first byte, the
characters, and ends with two or more
blanks. Leading occurrences of c are
ignored. If BLK is zero, text is taken
from the terminal input buffer, other-
wise from the disc block stored in BLK.
See BLK, IN.

X
This is a pseudonym for the "null" or
dictionary entry for a name of one
character of ascii null. It is the
execution procedure to terminate
interpretation of a line of text from
the terminal or within a disc buffer,
as both buffers always have a null at
the end.

XOR n1 n2 --- xor L1
Leave the bitwise logical exclusive-or
of two values.

[P,L1
Used in a colon-definition in form:
 : xxx [words] more ;
Suspend compilation. The words after
[are executed, not compiled. This
allows calculation or compilation
exceptions before resuming compilation
with]. See LITERAL,].

[COMPILE] P,C
Used in a colon-definition in form:
 : xxx [COMPILE] FORTH ;
[COMPILE] will force the compilation
of an immediate definition, that would
otherwise execute during compilation.
The above example will select the FORTH
vocabulary when xxx executes, rather
than at compile time.

] L1
Resume compilation, to the completion of
a colon-definition. See [.

87.

88.

XIII. Error and Warning Messages

Messages are listed alphabetically below. The following conditions do not

fit in the alphabetical list:

word ? The word is not defined. This will also occur if

a number contains a digit not valid in the current

number base, e.g. '8' in octal. Also note that

editor operations are undefined unless a screen

is being edited, and assembly mnemonics, etc. are

undefined outside of a 'CODE' definition. Also

the editor, assembler, and string package must

have been loaded from disk before they can be

used.

no response If there is no response from the system, first

hit carriage return to see if the system responds

'OK'. If not, try semicolon and carriage return,

in case the system was in compilation mode.

MSG # n Most error conditions in the Forth Interest Group

model can report as either message numbers or

texts. This scheme allows the message texts to be

kept on disk to save memory, yet if the disk file

(FORTH.DAT) is not accessible (e.g. on systems

with no disk), Forth can still run and it will

report errors as numbers. The system variable

'WARNING' controls this error-reporting mode;

commonly the disk load screen changes 'WARNING'

to cause message texts to be output. Note that

when numbers are output, they will print in

whatever number base is in effect.

89.

Error Numbers

These numbers are reported as 'MSG # n', only if the warning mode has not

been set to use message texts from disk. The warning mode is set for disk when you

execute '1 LOAD'. If you get one of these message numbers, look up the correspond-

ing text in the alphabetical error and warning list below for additional informa-

tion.

MSG # TEXT

 1 EMPTY STACK

 2 DICTIONARY FULL

 4 ISN'T UNIQUE (This is a warning only – no problem)

17 COMPILATION ONLY, USE IN DEFINITION

18 EXECUTION ONLY

19 CONDITIONALS NOT PAIRED

20 DEFINITION NOT FINISHED

21 IN PROTECTED DICTIONARY

22 USE ONLY WHEN LOADING

These message numbers are decimal. If the system is in octal when the

message is given, the corresponding octal numbers will be printed.

90.

Error/Warning List

Note that some conditions that do not fit well into this list are described

separately above.

$STACK EMPTY

String stack empty.

CAN'T SPREAD

Invalid argument to Editor 'SPREAD' command.

CODE ERROR, STACK DEPTH CHANGED

Error in using the Assembler, in a CODE definition. Usually an operand, mode

symbol, or instruction has been omitted, or is extraneous. In case of diffi-

culty spotting the error, enter a bunch of text CODE definitions, each with

only one or a small number of instructions from the erroneous definition.

COMPILATION ONLY, USE IN DEFINITION

A word such as 'DO', which can only be used inside of a colon definition, has

been used otherwise.

CONDITIONALS NOT PAIRED

'IF...ENDIF' or other conditionals are not paired or nested correctly.

DECLARE VOCABULARY

Attempt to FORGET when the CONTEXT and CURRENT vocabularies are not the same.

Beware of 'F0RGET'; the entire range of words forgotten must be in a single

vocabulary, otherwise Forth may crash. 'FORGET' is seldom useful on this

system anyway, as there is enough memory so that it is unnecessary to clean

up the dictionary very often, and if it is necessary, it is easy to reload

the system. Valuable definitions should be in source form on disk.

DEFINITION NOT FINISHED

Erroneous structure, such as 'DO' with no corresponding 'LOOP' when semicolon

ends the definition.

91.

DISK READ ERROR # n

Disk access error; for some reason the program is not able to read

'FORTH.DAT'. Make sure that the file is present on the proper disk and/or

in the proper account number. These error numbers vary depending on the

operating system. In case of difficulty, the source listing disk I/O section

in lines 2000 and beyond pinpoints each error number in the I/O process.

(Note than under RSX-11M, in case Forth crashes after 'FORTH.DAT' has been

accessed, that file will probably need to be unlocked.)

DISK WRITE ERROR # n

See DISK READ ERROR, above.

EMPTY STACK

Attempt to use data from the stack when it is empty. However, this condition

is not checked every time, for efficiency reasons. It is checked whenever

control returns to the keyboard. Also, when 'EMPTY STACK' is given, a couple

of numbers are placed on the stack; these are for use in future debugging

packages. Therefore 'EMPTY STACK' will not occur every time.

ERR 0 ARG

Attempt to EDIT screen zero (usually the argument of 'EDIT' was omitted).

Screen numbers start at 1.

ERR-BR+ n

Attempt to branch beyond range of the 'BR' instruction, in a CODE definition.

'n' is the length of the attempted branch.

ERR-BR- n

Same, only attempt to exceed branch range in negative direction.

ERR-REG-B

Non-register argument to 'JSR,' or 'XOR,'.

ERROR, NO SECOND STRING

Attempt to use '$OVER' or some other string operation which requires two

arguments, when there is only one argument on the string stack.

EXECUTION ONLY

Attempt to use a colon within a colon definition.

92.

IN PROTECTED DICTIONARY

Attempt to FORGET a word below the FENCE, which is a safety guard to prevent

accidental forgetting of the Forth system. To FORGET below the FENCE, first

put a lower limit address into the system variable 'FENCE'.

ISN'T UNIQUE

This is a warning only. It means that the word just defined already exists.

The consequence is that the previous definition becomes no longer accessible,

which is alright if you do not intend to use the original definition later in

the same program. In case of a mistaken redefinition, FORGET the mistake and

re-enter the definition with a different name.

NOT A REGISTER n

In the assembler, an address-mode symbol which required a register argument

was given a number 'n' which was not zero through seven.

TRAP ERROR # n addr psw

A run-time error occurred and trapped to the operating system. The trap

number (which varies with operating system), the address of the trap, and the

computer's PSW [Processor Status Word] are given in the current number base.

Common causes of traps are non-existent or otherwise invalid addresses.

USE ONLY WHEN LOADING

The operation '-->' (which is not used in this system anyway) was executed

from the keyboard, not from a screen being loaded from disk.

WOULD CAUSE $OVERFLOW

A string operation could not be performed because the string stack would have

overflowed into the dictionary, or come dangerously close.

Usually the session can continue normally after one of these errors has been

reported. Previous definitions should still be good. Certain errors in use of the

assembler may leave the number base set to octal; 'DECIMAL' will restore it.

93.

	I. Introduction
	II. Getting Started
	III. Sample Session
	IV. Editor
	V. Assembler
	VI. Strings
	VII. Operating System Calls
	VIII. Linkage to Other Languages (RSX)
	IX. Bring-Up Options
	X. Documentation Hints
	XI. FORTH.DAT Listing
	XII. Glossary
	XIII. Error and Warning Messages

