
fig-FORTH GLOSSARY

This glossary contains a11 of the word defini-
tions in Release 1 of fig-FORTH. The definitions
are presented in the order of their ascii sort.

The first line of each entry shows a symbolic
description of the action of the procedure on
the parameter stack. The symbols indicate the
order in which input parameters have been placed
on the stack. Three dashes "---" indicate the
execution point; any parameters left on the
stack are listed. In this notation, the top of
the stack is to the right.

The symbols include:

addr memory address

b 8 bit byte (i.e. hi 8 bits zero)

c 7 bit ascii character (hi 9 bits zero)

d 32 bit signed double integer, most signi-
ficant portion with sign on top of stack

f boolean flag. 0=false, non-zero=true

ff boolean false flag=0

n 16 bit signed integer number

u 16 bit unsigned integer

tf boolean true flag=non-zero

The capital letters on the right show definition
characteristics:

C May only be used within a colon defini-
tion. A digit indicates number of mem-
ory addresses used, if other than one.

E Intended for execution only.

L0 Level Zero definition of FORTH-78.

L1 Level One definition of FORTH-78.

P Has precedence bit set. Will execute
even when compiling.

U A user variable.

Unless otherwise noted, all references to
numbers are for 16 bit signed integers. On
8 bit data bus computers, the high byte of a
number is on top of the stack, with the sign
in the leftmost bit. For 32 bit signed double
numbers, the most significant part (with the
sign) is on top.

All arithmetic is implicitly 16 bit signed
integer math, with error and under-flow
indication unspecified.

! n addr --- L0
Store 16 bits of n at address.
Pronounced “store”.

!CSP
Save the stack position in CSP. Used as
part of the compiler security.

d1 --- d2 L0
Generate from a double number d1, the
next ascii character which is placed in
an output string. Result d2 is the
quotient after division by BASE, and is
maintained for further processing. Used
between <# and #>. See #S.

#> d --- addr count L0
Terminates numeric output conversion by
dropping d, leaving the text address and
character count suitable for TYPE.

#S d1 --- d2 L0
Generates ascii text in the text output
buffer, by the use of #, until a zero
double number n2 results. Used between
<# and #>.

' --- addr P,L0
Used in the form:
 ' nnnn
Leaves the parameter field address of
dictionary word nnnn. As a complier
directive,executes in a colon-definition
to compile the address as a literal. If
the word is not found after a search of
CONTEXT and CURRENT, an appropriate
error message is given. Pronounced
"tick".

(P,L0
Used in the form:
 (cccc)
Ignore a comment that will be delimited
by a right parenthesis on the same line.
May occur during execution or in a
colon-definition. A blank after the
leading parenthesis is required.

(.") C+
The run-time procedure, compiled by ."
which transmits the following in-line
text to the selected output device.
See ."

(;CODE) C
The run-time procedure, compiled by
;CODE, that rewrites the code field of
the most recently defined word to point
to the following machine code sequence.
See ;CODE.

(+LOOP) n --- C2
The run-time procedure compiled by
+LOOP, which increments the loop index
by n and tests for loop completion. See
+LOOP.

(ABORT)
Executes after an error when WARNING is
-1. This word normally executes ABORT,
but may be altered (with care) to a
user's alternative procedure.

(DO) C
The run-time procedure compiled by DO
which moves the loop control parameters
to the return stack. See DO.

(FIND) addr1 addr2 --- pfa b tf (ok)
 addr1 addr2 --- ff (bad)
Searches the dictionary starting at the
name field address addr2, matching to
the text at addr1. Returns parameter
field address, length byte of name field
and boolean true for a good match. If
no match is found, only a boolean false
is left.

(LINE) n1 n2 --- addr count
Convert the line number n1 and the
screen n2 to the disc buffer address
containing the data. A count of 64
indicates the full line text length.

(LOOP) C2
The run-time procedure compiled by LOOP
which increments the loop index and
tests for loop completion. See LOOP.

(NUMBER) d1 addr1 --- d2 addr2
Convert the ascii text beginning at
addr1+1 with regard to BASE. The new
value is accumulated into double number
d1, being left as d2. addr2 is the
address of the first unconvertible
digit. Used by NUMBER.

* n1 n2 --- prod L0
Leave the signed product of two signed
numbers.

*/ n1 n2 n3 --- n4 L0
Leave the ratio n4 = n1*n2/n3
where all are signed numbers. Retention
of an intermediate 31 bit product per-
mits greater accuracy than would be
available with the sequence:
 n1 n2 * n3 /

*/MOD n1 n2 n3 --- n4 n5 L0
Leave the quotient n5 and remainder n4
of the operation n1*n2/n3. A 31 bit
intermediate product is used as for */.

2.

+ n1 n2 --- sum L0
Leave the sum of n1+n2.

+! n addr --- L0
Add n to the value at the address.
Pronounced "plus-store".

+- n1 n2 --- n3
Apply the sign of n2 to n1, which is
left as n3.

+BUF addr1 --- addr2 f
Advance the disc buffer address addr1 to
the address of the next buffer addr2.
Boolean f is false when addr2 is the
buffer presently pointed to by variable
PREV.

+LOOP n1 --- (run)
 addr n2 --- (compile) P,C2,L0
Used in a colon-definition in the form:
 DO ... n1 +LOOP
At run-time, +LOOP selectively controls
branching back to the corresponding DO
based on n1, the loop index and the loop
limit. The signed increment n1 is added
to the index and the total compared to
the limit. The branch back to DO occurs
until the new index is equal to or
greater than the limit (n1>0), or until
the new index is equal to or less than
the limit (n1<0). Upon exiting the
loop, the parameters are discarded and
execution continues ahead.

At compiled time, +LOOP compiles the
run-time word (+LOOP) and the branch
offset computed from HERE to the address
left on the stack by DO. n2 is used for
compile time error checking.

+ORIGIN n --- addr
Leave the memory address relative by n
to the origin parameter area. n is the
minimum address unit, either byte or
word. This definition is used to access
or modify the boot-up parameters at the
origin area.

, n --- L0
Store n into the next available
dictionary memory cell, advancing the
dictionary pointer. (comma)

- n1 n2 --- diff L0
Leave the difference of n1-n2.

--> P,L0
Continue interpretation with the next
disc screen. (pronounced next-screen).

-DUP n1 -- n1 (if zero)
 n1 -- n1 n1 (if non-zero) L0
Reproduce n1 only if it is non-zero.
This is usually used to copy a value
just before IF, to eliminate the need
for an ELSE part to drop it.

-FIND --- pfa b tf (found)
 --- ff (not found)
Accepts the next text word (delimited by
blanks) in the input stream to HERE, and
searches the CONTEXT and then CURRENT
vocabularies for a matching entry. If
found, the dictionary entry's parameter
field address, its length byte, and a
boolean true is left. Otherwise, only a
boolean false is left.

-TRAILING addr n1 --- addr n2
Adjusts the character count n1 of a text
string beginning address to suppress the
output of trailing blanks. I.e. the
characters at addr+n1 to addr+n2 are
blanks.

. n --- L0
Print a number from a signed 16 bit
two's complement value, converted
according to the numeric BASE. A trail-
ing blank follows. Pronounced "dot".

." P,L0
Used in the form:
 ." cccc"
Compiles an in-line string cccc
(delimited by the trailing ") with an
execution procedure to transmit the text
to the selected output device. If exe-
cuted outside a definition, ." will
immediately print the text until the
final ". The maximum number of
characters may be an installation
dependent value. See (.").

.LINE line scr ---
Print on the terminal device, a line of
text from the disc by its line and
screen number. Trailing blanks are
suppressed.

.R n1 n2 ---
Print the number n1 right aligned in a
field whose width is n2. No following
blank is printed.

/ n1 n2 --- quot L0
Leave the signed quotient of n1/n2.

/MOD n1 n2 --- rem quot L0
Leave the remainder and signed quotient
of n1/n2. The remainder has the sign of
the dividend.

3.

0 1 2 3 --- n
These small numbers are used so often
that it is attractive to define them by
name in the dictionary as constants.

0< n --- f L0
Leave a true flag if the number is less
than zero (negative), otherwise leave a
false flag.

0= n --- f L0
Leave a true flag if the number is equal
to zero, otherwise leave a false flag.

0BRANCH f --- C2
The run-time procedure to conditionally
branch. If f is false (zero), the fol-
lowing in-line parameter is added to the
interpretive pointer to branch ahead or
back. Compiled by IF, UNTIL, and WHILE.

1+ n1 --- n2 L1
Increment n1 by 1.

2+ n1 --- n2
Leave n1 incremented by 2.

: P,E,L0
Used in the form called a colon-
definition:
 : cccc ... ;
Creates a dictionary entry defining cccc
as equivalent to the following sequence
of Forth word definitions '...' until
the next ';' or ';CODE'. The compiling
process is done by the text interpreter
as long as STATE is non-zero. Other
details are that the CONTEXT vocabulary
is set to the CURRENT vocabulary and
that words with the precedence bit set
(P) are executed rather than being
compiled.

; P,C,L0
Terminate a colon-definition and stop
further compilation. Compiles the run-
time ;S.

;CODE P,C,L0
Used in the form:
 : cccc ;CODE
 assembly mnemonics
Stop compilation and terminate a new
defining word cccc by compiling (;CODE).
Set the CONTEXT vocabulary to ASSEMBLER,
assembling to machine code the following
mnemonics.

When cccc later executes in the form:
 cccc nnnn
the word nnnn will be created with its
execution procedure given by the machine
code following cccc. That is, when nnnn

is executed, it does so by jumping to
the code after nnnn. An existing
defining word must exist in cccc prior
to ;CODE.

;S P,L0
Stop interpretation of a screen. ;S is
also the run-time word compiled at the
end of a colon-definition which returns
execution to the calling procedure.

< n1 n2 --- f L0
Leave a true flag if n1 is less than n2;
otherwise leave a false flag.

<# L0
Setup for pictured numeric output
formatting using the words:
 <# # #S SIGN #>
The conversion is done on a double
number producing text at PAD.

<BUILDS C,L0
Used within a colon-definition:
 : cccc <BUILDS ...
 DOES> ... ;
Each time cccc is executed, <BUILDS
defines a new word with a high-level
execution procedure. Executing cccc in
the form:
 cccc nnnn
uses <BUILDS to create a dictionary
entry for nnnn with a call to the DOES>
part for nnnn. When nnnn is later
executed, it has the address of its
parameter area on the stack and executes
the words after DOES> in cccc. <BUILDS
and DOES> allow run-time procedures to
be written in high-level rather than in
assembler code (as required by ;CODE).

= n1 n2 --- f L0
Leave a true flag if n1=n2; otherwise
leave a false flag.

> n1 n2 --- f L0
Leave a true flag if n1 is greater than
n2; otherwise a false flag.

>R n --- C,L0
Remove a number from the computation
stack and place as the most accessible
on the return stack. Use should be
balanced with R> in the same definition.

? addr --- L0
Print the value contained at the address
in free format according to the current
base.

?COMP
Issue error message if not compiling.

4.

?CSP
Issue error message if stack position
differs from value saved in CSP.

?ERROR f n ---
Issue an error message number n, if the
boolean flag is true.

?EXEC
Issue an error message if not executing.

?LOADING
Issue an error message if not loading.

?PAIRS n1 n2 ---
Issue an error message if n1 does not
equal n2. The message indicates that
compiled conditionals do not match.

?STACK
Issue an error message if the stack is
out of bounds. This definition may be
installation dependent.

?TERMINAL --- f
Perform a test of the terminal keyboard
for actuation of the break key. A true
flag indicates actuation. This defini-
tion is installation dependent.

@ addr --- n L0
Leave the 16 bit contents of address.

ABORT L0
Clear the stacks and enter the execution
state. Return control to the operator's
terminal, printing a message appropriate
to the installation.

ABS n --- u L0
Leave the absolute value of n as u.

AGAIN addr n --- (compiling) P,C2,L0
Used in a colon-definition in the form:
 BEGIN ... AGAIN
At run-time, AGAIN forces execution to
return to corresponding BEGIN. There is
no effect on the stack. Execution can-
not leave this loop (unless R> DROP
is executed one level below).

At compile time, AGAIN compiles BRANCH
with an offset from HERE to addr. n is
used for compile-time error checking.

ALLOT n --- L0
Add the signed number to the dictionary
pointer DP. May be used to reserve
dictionary space or re-origin memory.
n is with regard to computer address
type (byte or word).

AND n1 n2 --- n3 L0
Leave the bitwise logical and of n1 and
n2 as n3.

B/BUF --- n
This constant leaves the number of bytes
per disc buffer, the byte count read
from disc by BLOCK.

B/SCR --- n
This constant leaves the number of
blocks per editing screen. By conven-
tion, an editing screen is 1024 bytes
organized as 16 lines of 64 characters
each.

BACK addr ---
Calculate the backward branch offset
from HERE to addr and compile into the
next available dictionary memory
address.

BASE --- addr U,L0
A user variable containing the current
number base used for input and output
conversion.

BEGIN --- addr n (compiling) P,L0
Occurs in a colon-definition in form:
 BEGIN ... UNTIL
 BEGIN ... AGAIN
 BEGIN ... WHILE ... REPEAT
At run-time, BEGIN marks the start of a
sequence that may be repetitively exe-
cuted. It serves as a return point from
the corresponding UNTIL, AGAIN or
REPEAT. When executing UNTIL, a return
to BEGIN will occur if the top of the
stack is false; for AGAIN and REPEAT a
return to BEGIN always occurs.

At compile time BEGIN leaves its return
address and n for compiler error check-
ing.

BL --- c
A constant that leaves the ascii value
for "blank".

BLANKS addr count ---
Fill an area of memory beginning at addr
with blanks.

BLK --- addr U,L0
A user variable containing the block
number being interpreted. If zero,
input is being taken from the terminal
input buffer.

5.

BLOCK n --- addr L0
Leave the memory address of the block
buffer containing block n. If the block
is not already in memory, it is trans-
ferred from disc to whichever buffer was
least recently written. If the block
occupying that buffer has been marked as
updated, it is re-written to disc before
block n is read into the buffer. See
also BUFFER, R/W, UPDATE, FLUSH.

BLOCK-READ
BLOCK-WRITE These are the preferred names for

the installation dependent code to read
and write one block to the disc.

BRANCH C2,L0
The run-time procedure to uncondition-
ally branch. An in-line offset is added
to the interpretive pointer IP to branch
ahead or back. BRANCH is compiled by
ELSE, AGAIN, REPEAT.

BUFFER n --- addr
Obtain the next memory buffer, assigning
it to block n. If the contents of the
buffer are marked as updated, it is
written to the disc. The block is not
read from the disc. The address left is
the first cell within the buffer for
data storage.

C! b addr ---
Store 8 bits at address. On word
addressing computers, further specifi-
cation is necessary regarding byte
addressing.

C, b ---
Store 8 bits of b into the next avail-
able dictionary byte, advancing the
dictionary pointer. This is only avail-
able on byte addressing computers, and
should be used with caution on byte
addressing minicomputers.

C@ addr --- b
Leave the 8 bit contents of memory
address. On word addressing computers,
further specification is needed regard-
ing byte addressing.

CFA pfa --- cfa
Convert the parameter field address of
a definition to its code field address.

CMOVE from to count ---
Move the specified quantity of bytes
beginning at address from to address to.
The contents of address from are moved
first proceeding toward high memory.
Further specification is necessary on
word addressing computers.

COLD
The cold start procedure to adjust the
dictionary pointer to the minimum stan-
dard and restart via ABORT. May be
called from the terminal to remove
application programs and restart.

COMPILE C2
When the word containing COMPILE
executes, the execution address of the
word following COMPILE is copied
(compiled) into the dictionary. This
allows specific compilation situations
to be handled in addition to simply
compiling an execution address (which
the interpreter already does).

CONSTANT n --- L0
A defining word used in the form:
 n CONSTANT cccc
to create word cccc, with its parameter
field containing n. When cccc is later
executed, it will push the value of n to
the stack.

CONTEXT --- addr U,L0
A user variable containing a pointer to
the vocabulary within which dictionary
searches will first begin.

COUNT addr1 --- addr2 n L0
Leave the byte address addr2 and byte
count n of a message text beginning at
address addr1. It is presumed that the
first byte at addr1 contains the text
byte count and the actual text starts
with the second byte. Typically COUNT
is followed by TYPE.

CR L0
Transmit a carriage return and line feed
to the selected output device.

CREATE
A defining word used in the form:
 CREATE cccc
by such words as CODE and CONSTANT to
create a dictionary header for a Forth
definition. The code field contains the
address of the word's parameter field.
The new word is created in the CURRENT
vocabulary.

CSP --- addr U
A user variable temporarily storing the
stack pointer position, for compilation
error checking.

D+ d1 d2 --- dsum
Leave the double number sum of two
double numbers.

6.

D+- d1 n --- d2
Apply the sign of n to the double number
d1, leaving it as d2.

D. d --- L1
Print a signed double number from a 32
bit two's complement value. The high-
order 16 bits are most accessible on the
stack. Conversion is performed accord-
ing to the current BASE. A blank fol-
lows. Pronounced D-dot.

D.R d n ---
Print a signed double number d right
aligned in a field n characters wide.

DABS d --- ud
Leave the absolute value ud of a double
number.

DECIMAL L0
Set the numeric conversion BASE for
decimal input-output.

DEFINITIONS L1
Used in the form:
 cccc DEFINITIONS
Set the CURRENT vocabulary to the
CONTEXT vocabulary. In the example,
executing vocabulary name cccc made it
the CONTEXT vocabulary and executing
DEFINITIONS made both specify vocabulary
cccc.

DIGIT c n1 --- n2 tf (ok)
 c n1 --- ff (bad)
Converts the ascii character c (using
base n1) to its binary equivalent n2,
accompanied by a true flag. If the
conversion is invalid, leaves only a
false flag.

DLIST
List the names of the dictionary entries
in the CONTEXT vocabulary.

DLITERAL d --- d (executing)
 d --- (compiling) P

If compiling, compile a stack double
number into a literal. Later execution
of the definition containing the literal
will push it to the stack. If execut-
ing, the number will remain on the
stack.

DMINUS d1 --- d2
Convert d1 to its double number two's
complement.

DO n1 n2 --- (execute)
 addr n --- (compile) P,C2,L0
Occurs in a colon-definition in form:
 DO ... LOOP
 DO ... +LOOP
At run time, DO begins a sequence with
repetitive execution controlled by a
loop limit n1 and an index with initial
value n2. DO removes these from the
stack. Upon reaching LOOP the index is
incremented by one. Until the new index
equals or exceeds the limit, execution
loops back to just after DO; otherwise
the loop parameters are discarded and
execution continues ahead. Both n1 and
n2 are determined at run-time and may be
the result of other operations. Within
a loop 'I' will copy the current value
of the index to the stack. See I, LOOP,
+LOOP, LEAVE.

When compiling within the colon-defini-
tion, DO compiles (DO), leaves the
following address addr and n for later
error checking.

DOES> L0
A word which defines the run-time action
within a high-level defining word.
DOES> alters the code field and first
parameter of the new word to execute the
sequence of compiled word addresses
following DOES>. Used in combination
with <BUILDS. When the DOES> part
executes it begins with the address of
the first parameter of the new word on
the stack. This allows interpretation
using this area or its contents. Typi-
cal uses include the Forth assembler,
multi-dimensional arrays, and compiler
generation.

DP --- addr U,L
A user variable, the dictionary pointer,
which contains the address of the next
free memory above the dictionary. The
value may be read by HERE and altered by
ALLOT.

DPL --- addr U,L0
A user variable containing the number of
digits to the right of the decimal on
double integer input. It may also be
used to hold output column location of a
decimal point, in user generated format-
ting. The default value on single
number input is -1.

7.

DR0 Installation dependent commands to
DR1 select disc drives, by presetting

OFFSET. The contents of OFFSET are
added to the block number in BLOCK to
allow for this selection. Offset is
suppressed for error text so that it
may always originate from drive 0.

DROP n --- L0
Drop the number from the stack.

DUMP addr a --- L0
Print the contents of n memory locations
beginning at addr. Both addresses and
contents are shown in the current
numeric base.

DUP n --- n n L0
Duplicate the value on the stack.

ELSE addr1 n1 --- addr2 n2
 (compiling) P,C2,L0
Occurs within a colon-definition in the
form:
 IF ... ELSE ... ENDIF
At run-time, ELSE executes after the
true part following IF. ELSE forces
execution to skip over the following
false part and resumes execution after
the ENDIF. It has no stack.

At compile-time ELSE emplaces BRANCH
reserving a branch offset, leaves the
address addr2 and n2 for error testing.
ELSE also resolves the pending forward
branch from IF by calculating the offset
from addr1 to HERE and storing at addr1.

EMIT c --- L0
Transmit ascii character c to the
selected output device. OUT is
incremented for each character output.

EMPTY-BUFFERS L0
Mark all block-buffers as empty, not
necessarily affecting the contents.
Updated blocks are not written to the
disc. This is also an initialization
procedure before first use of the disc.

ENCLOSE addr1 c ---
 addr1 n1 n2 n3
The text scanning primitive used by
WORD. From the text address addr1 and
an ascii delimiting character c, is
determined the byte offset to the first
non-delimiter character n1, the offset
to the first delimiter after the text
n2, and the offset to the first charac-
ter not included. This procedure will
not process past an ascii 'null', treat-
ing it as an unconditional delimiter.

END P,C2,L0
This is an 'alias' or duplicate
definition for UNTIL.

ENDIF addr n --- (compile) P,C0,L0
Occurs in a colon-definition in form:
 IF ... ENDIF
 IF ... ELSE ... ENDIF
At run-time, ENDIF serves only as the
destination of a forward branch from IF
or ELSE. It marks the conclusion of the
conditional structure. THEN is another
name for ENDIF. Both names are sup-
ported in fig-FORTH. See also IF and
ELSE.

At compile-time, ENDIF computes the
forward branch offset from addr to HERE
and stores it at addr. n is used for
error tests.

ERASE addr n ---
Clear a region of memory to zero from
addr over n addresses.

ERROR line --- in blk
Execute error notification and restart
of system. WARNING is first examined.
If 1, the text of line n, relative to
screen 4 of drive 0, is printed. This
line number may be positive or negative,
and beyond just screen 4. If WARNING=0,
n is just printed as a message number
(non disc installation). If WARNING is
-1, the definition (ABORT) is executed,
which executes the system ABORT. The
user may cautiously modify this execu-
tion by altering (ABORT). fig-FORTH
saves the contents of IN and BLK to
assist in determining the location of
the error. Final action is execution
of QUIT.

EXECUTE addr ---
Execute the definition whose code field
address is on the stack. The code field
address is also called the compilation
address.

EXPECT addr count --- L0
Transfer characters from the terminal to
address, until a "return" or the count
of characters have been received. One
or more nulls are added at the end of
the text.

FENCE --- addr U
A user variable containing an address
below which FORGETting is trapped. To
forget below this point the user must
alter the contents of FENCE.

8.

FILL addr quan b ---
Fill memory at the address with the
specified quantity of bytes b.

FIRST --- n
A constant that leaves the address of
the first (lowest) block buffer.

FLD --- addr U
A user variable for control of number
output field width. Presently unused in
fig-FORTH.

FORGET E,L0
Executed in the form:
 FORGET cccc
Deletes definition named cccc from the
dictionary with all entries physically
following it. In fig-FORTH, an error
message will occur if the CURRENT and
CONTEXT vocabularies are not currently
the same.

FORTH P,L1
The name of the primary vocabulary.
Execution makes FORTH the CONTEXT
vocabulary. Until additional user
vocabularies are defined, new user
definitions become a part of FORTH.
FORTH is immediate, so it will execute
during the creation of a colon-defini-
tion, to select this vocabulary at
compile time.

HERE --- addr L0
Leave the address of the next available
dictionary location.

HEX L0
Set the numeric conversion base to
sixteen (hexadecimal).

HLD --- addr L0
A user variable that holds the address
of the latest character of text during
numeric output conversion.

HOLD c --- L0
Used between <# and #> to insert an
ascii character into a pictured numeric
output string. E.g. 2E HOLD will
place a decimal point.

I --- n C,L0
Used within a DO-LOOP to copy the loop
index to the stack. Other use is imple-
mentation dependent. See R.

ID. addr ---
Print a definition's name from its name
field address.

IF f --- (run-time)
 --- addr n (compile) P,C2,L0
Occurs in a colon-definition in form:
 IF (tp) ... ENDIF
 IF (tp) ... ELSE (fp) ... ENDIF
At run-time, IF selects execution based
on a boolean flag. If f is true (non-
zero), execution continues ahead thru
the true part. If f is false (zero),
execution skips till just after ELSE to
execute the false part. After either
part, execution resumes after ENDIF.
ELSE and its false part are optional; if
missing, false execution skips to just
after ENDIF.

At compile-time IF compiles 0BRANCH and
reserves space for an offset at addr.
addr and n are used later for resolution
of the offset and error testing.

IMMEDIATE
Mark the most recently made definition
so that when encountered at compile
time, it will be executed rather than
being compiled. I.e. the precedence bit
in its header is set. This method
allows definitions to handle unusual
compiling situations, rather than build
them into the fundamental compiler. The
user may force compilation of an
immediate definition by preceding it
with [COMPILE].

IN --- addr L0
A user variable containing the byte
offset within the current input text
buffer (terminal or disc) from which the
next text will be accepted. WORD uses
and moves the value of IN.

INDEX from to ---
Print the first line of each screen over
the range from, to. This is used to
view the comment lines of an area of
text on disc screens.

INTERPRET
The outer text interpreter which sequen-
tially executes or compiles text from
the input stream (terminal or disc)
depending on STATE. If the word name
cannot be found after a search of
CONTEXT and then CURRENT it is converted
to a number according to the current
base. That also-failing, an error mes-
sage echoing the name with a " ?" will
be given. Text input vill be taken ac-
cording to the convention for WORD. If a
decimal point is found as part of a num-
ber, a double number value will be left.
The decimal point has no other purpose
than to force this action. See NUMBER.

9.

KEY --- c L0
Leave the ascii value of the next
terminal key struck.

LATEST --- addr
Leave the name field address of the
topmost word in the CURRENT vocabulary.

LEAVE C,L0
Force termination of a DO-LOOP at the
next opportunity by setting the loop
limit equal to the current value of the
index. The index itself remains un-
changed, and execution proceeds normally
until LOOP or +LOOP is encountered.

LFA pfa --- lfa
Convert the parameter field address of a
dictionary definition to its link field
address.

LIMIT --- n
A constant leaving the address just
above the highest memory available for
a disc buffer. Usually this is the
highest system memory.

LIST n --- L0
Display the ascii text of screen n on
the selected output device. SCR
contains the screen number during and
after this process.

LIT --- n C2,L0
Within a colon-definition, LIT is
automatically compiled before each 16
bit literal number encountered in input
text. Later execution of LIT causes the
contents of the next dictionary address
to be pushed to the stack.

LITERAL n --- (compiling) P,C2,L0
If compiling, then compile the stack
value n as a 16 bit literal. This
definition is immediate so that it will
execute during a colon definition. The
intended use is:
 : xxx [calculate] LITERAL ;
Compilation is suspended for the compile
time calculation of a value. Compila-
tion is resumed and LITERAL compiles
this value.

LOAD n --- L0
Begin interpretation of screen n.
Loading will terminate at the end of
the screen or at ;S. See ;S and -->.

LOOP addr n --- (compiling) P,C2,L0
Occurs in a colon-definition in form:
 DO ... LOOP
At run-time, LOOP selectively controls
branching back to the corresponding DO
based on the loop index and limit. The
loop index is incremented by one and
compared to the limit. The branch back
to DO occurs until the index equals or
exceeds the limit; at that time, the
parameters are discarded and execution
continues ahead.

At compile-time, LOOP compiles (LOOP)
and uses addr to calculate an offset
to DO. n is used for error testing.

M* n1 n2 --- d
A mixed magnitude math operation which
leaves the double number signed product
of two signed numbers.

M/ d n1 --- n2 n3
A mixed magnitude math operator which
leaves the signed remainder n2 and
signed quotient n3, from a double number
dividend and divisor n1. The remainder
takes its sign from the dividend.

M/MOD ud1 u2 --- u3 ud4
An unsigned mixed magnitude math opera-
tion which leaves a double quotient ud4
and remainder u3, from a double dividend
ud1 and single divisor u2.

MAX n1 n2 --- max L0
Leave the greater of two numbers.

MESSAGE n ---
Print on the selected output device the
text of line n relative to screen 4 of
drive 0. n may be positive or negative.
MESSAGE may be used to print incidental
text such as report headers. If WARNING
is zero, the message will simply be
printed as a number (disc unavailable).

MIN n1 n2 --- min L0
Leave the smaller of two numbers.

MINUS n1 --- n2 L0
Leave the two's complement of a number.

MOD n1 n2 --- mod L0
Leave the remainder of n1/n2, with the
same sign as n1.

MON
Exit to the system monitor, leaving a
re-entry to Forth, if possible.

10.

MOVE addr1 addr2 n ---
Move the contents of n memory cells (16
bit contents) beginning at addr1 into n
cells beginning at addr2. The contents
of addr1 are moved first. This defini-
tion is appropriate on word addressing
computers.

NEXT
This is the inner interpreter that uses
the interpretive pointer IP to execute
compiled Forth definitions. It is not
directly executed but is the return
point for all code procedures. It acts
by fetching the address pointed by IP,
storing this value in register W. It
then jumps to the address pointed to by
the address pointed to by W. W points
to the code field of a definition which
contains the address of the code which
executes for that definition. This
usage of indirect threaded code is a
major contributor to the power, porta-
bility, and extensibility of Forth.
Locations of IP and W are computer
specific.

NFA pfa --- nfa
Convert the parameter field address of a
definition to its name field.

NUMBER addr --- d
Convert a character string left at addr
with a preceding count, to a signed
double number, using the current numeric
base. If a decimal point is encountered
in the text, its position will be given
in DPL, but no other effect occurs. If
numeric conversion is not possible, an
error message will be given.

OFFSET --- addr U
A user variable which may contain a
block offset to disc drives. The con-
tents of OFFSET are added to the stack
number by BLOCK. Messages by MESSAGE
are independent of OFFSET. See BLOCK,
DR0, DR1, MESSAGE.

OR n1 n2 --- or L0
Leave the bit-wise logical or of two
16 bit values.

OUT --- addr U
A user variable that contains a value
incremented by EMIT. The user may alter
and examine OUT to control display for-
matting.

OVER n1 n2 --- n1 n2 n1 L0
Copy the second stack value, placing it
as the new top.

PAD --- addr L0
Leave the address of the text output
buffer, which is a fixed offset above
HERE.

PFA nfa --- pfa
Convert the name field address of a
compiled definition to its parameter
field address.

POP
The code sequence to remove a stack
value and return to NEXT. POP is not
directly executable, but is a Forth re-
entry point after machine code.

PREV --- addr
A variable containing the address of the
disc buffer most recently referenced.
The UPDATE command marks this buffer to
be later written to disc.

PUSH
This code sequence pushes machine reg-
isters to the computation stack and
returns to NEXT. It is not directly
executable, but is a Forth re-entry
point after machine code.

PUT
This code sequence stores machine
register contents over the topmost
computation stack value and returns to
NEXT. It is not directly executable,
but is a Forth re-entry point after
machine code.

QUERY
Input 80 characters of text (or until a
"return") from the operator's terminal.
Text is positioned at the address con-
tained in TIB with IN set to zero.

QUIT L1
Clear the return stack, stop compila-
tion, and return control to the
operator's terminal. No message is
given.

R --- n
Copy the top of the return stack to the
computation stack.

R# --- addr U
A user variable which may contain the
location of an editing cursor, or other
file related function.

11.

R/W addr blk f ---
The fig-FORTH standard disc read-write
linkage. addr specifies the source or
destination block buffer, blk is the
sequential number of the referenced
block, and f is a flag for f=0 write and
f=1 read. R/W determines the location
on mass storage, performs the read-write
and performs any error checking.

R> --- n L0
Remove the top value from the return
stack and leave it on the computation
stack. See >R and R.

R0 --- addr U
A user variable containing the initial
location of the return stack. Pro-
nounced R-zero. See RP!

REPEAT addr n --- (compiling) P,C2
Used within a colon-definition in the
form:
 BEGIN ... WHILE ... REPEAT
At run-time, REPEAT forces an uncondi-
tional branch back to just after the
corresponding BEGIN.

At compile-time, REPEAT compiles BRANCH
and the offset from HERE to addr. n is
used for error testing.

ROT n1 n2 n3 --- n2 n3 n1 L0
Rotate the top three values on the
stack, bringing the third to the top.

RP!
A computer dependent procedure to ini-
tialize the return stack pointer from
user variable R0.

S->D n --- d
Sign extend a single number to form a
double number.

S0 --- addr U
A user variable that contains the
initial value for the stack pointer.
Pronounced S-zero. See SP!

SCR --- addr U
A user variable containing the screen
number most recently referenced by LIST.

SIGN n d --- d L0
Stores an ascii "-" sign just before a
converted numeric output string in the
text output buffer when n is negative.
n is discarded, but double number d is
maintained. Must be used between <#
and #>.

SMUDGE
Used during word definition to toggle
the "smudge bit" in a definition's name
field. This prevents an uncompleted
definition from being found during
dictionary searches, until compiling is
completed without error.

SP!
A computer dependent procedure to
initialize the stack pointer from S0.

SP@ --- addr
A computer dependent procedure to return
the address of the stack position to the
top of the stack, as it was before SP@
was executed (e.g. 1 2 SP@ @ . . .
would type 2 2 1).

SPACE L0
Transmit an ascii blank to the output
device.

SPACES n --- L0
Transmit n ascii blanks to the output
device.

STATE --- addr L0,U
A user variable containing the compila-
tion state. A non-zero value indicates
compilation. The value itself may be
implementation dependent.

SWAP n1 n2 --- n2 n1 L0
Exchange the top two values on the
stack.

TASK
A no-operation word which can mark the
boundary between applications. By
forgetting TASK and re-compiling, an
application can be discarded in its
entirety.

THEN P,C0,L0
An alias for ENDIF.

TIB --- addr U
A user variable containing the address
of the terminal input buffer.

TOGGLE addr b ---
Complement the contents of addr by the
bit pattern b.

12.

TRAVERSE addr1 n --- addr2
Move across the name field of a fig-
FORTH variable length name field. addr1
is the address of either the length byte
or the last letter. If n=1, the motion
is toward hi memory; if n=-1, the motion
is toward low memory. The addr2 result-
ing is the address of the other end of
the name.

TRIAD scr ---
Display on the selected output device
the three screens which include that
numbered scr, beginning with a screen
evenly divisible by three. Output is
suitable for source text records, and
includes a reference line at the bottom
taken from line 15 of screen 4.

TYPE addr count --- L0
Transmit count characters from addr to
the selected output device.

U* u1 u2 --- ud
Leave the unsigned double number product
of two unsigned numbers.

U/ ud u1 --- u2 u3
Leave the unsigned remainder u2 and
unsigned quotient u3 from the unsigned
double dividend ud and unsigned divisor
u1.

UNTIL f --- (run-time)
 addr n --- (compile) P,C2,L0
Occurs within a colon-definition in the
form:
 BEGIN ... UNTIL
At run-time, UNTIL controls the condi-
tional branch back to the corresponding
BEGIN. If f is false, execution returns
to just after BEGIN; if true, execution
continues ahead.

At compile-time, UNTIL compiles
(0BRANCH) and an offset from HERE to
addr. n is used for error tests.

UPDATE L0

Marks the most recently referenced block
(pointed to by PREV) as altered. The
block will subsequently be transferred
automatically to disc should its buffer
be required for storage of a different
block.

USE --- addr
A variable containing the address of the
block buffer to use next, as the least
recently written.

USER n --- L0
A defining word used in the form:
 n USER cccc
which creates a user variable cccc. The
parameter field of cccc contains n as a
fixed offset relative to the user point-
er register UP for this user variable.
When cccc is later executed, it places
the sum of its offset and the user area
base address on the stack as the storage
address of that particular variable.

VARIABLE E,L0
A defining word used in the form:
 n VARIABLE cccc
When VARIABLE is executed, it creates
the definition cccc with its parameter
field initialized to n. When cccc is
later executed, the address of its
parameter field (containing n) is left
on the stack, so that a fetch or store
may access this location.

VOC-LINK --- addr U
A user variable containing the address
of a field in the definition of the most
recently created vocabulary. All
vocabulary names are linked by these
fields to allow control for FORGETting
thru multiple vocabularies.

VOCABULARY E,L1
A defining word used in the form:
 VOCABULARY cccc
to create a vocabulary definition cccc.
Subsequent use of cccc will make it the
CONTEXT vocabulary which is searched
first by INTERPRET. The sequence "cccc
DEFINITIONS" will also make cccc the
CURRENT vocabulary into which new defi-
nitions are placed.

In fig-FORTH, cccc will be so chained as
to include all definitions of the vocab-
ulary in which cccc is itself defined.
All vocabularies ultimately chain to
Forth. By convention, vocabulary names
are to be declared IMMEDIATE. See
VOC-LINK.

VLIST
List the names of the definitions in the
context vocabulary. "Break" will ter-
minate the listing.

13.

WARNING --- addr U
A user variable containing a value
controlling messages. If = 1 disc is
present, and screen 4 of drive 0 is the
base location for messages. If = 0, no
disc is present and messages will be
presented by number. If = -1, execute
(ABORT) for a user specified procedure.
See MESSAGE, ERROR.

WHILE f --- (run-time)
 ad1 n1 --- ad1 n1 ad2 n2 P,C2
Occurs in a colon-definition in the
form:
 BEGIN ... WHILE (tp) ... REPEAT
At run-time, WHILE selects conditional
execution based on boolean flag f. If
f is true (non-zero), WHILE continues
execution of the true part thru to
REPEAT, which then branches back to
BEGIN. If f is false (zero), execution
skips to just after REPEAT, exiting the
structure.

At compile time, WHILE emplaces
(0BRANCH) and leaves ad2 of the reserved
offset. The stack values will be
resolved by REPEAT.

WIDTH --- addr U
In fig-FORTH, a user variable containing
the maximum number of letters saved in
the compilation of a definition's name.
It must be 1 thru 31, with a default
value of 31. The name character count
and its natural characters are saved, up
to the value in WIDTH. The value may be
changed at any time within the above
limits.

WORD c --- L0
Read the next text characters from the
input stream being interpreted, until a
delimiter c is found, storing the packed
character string beginning at the dic-
tionary buffer HERE. WORD leaves the
character count in the first byte, the
characters, and ends with two or more
blanks. Leading occurrences of c are
ignored. If BLK is zero, text is taken
from the terminal input buffer, other-
wise from the disc block stored in BLK.
See BLK, IN.

X
This is a pseudonym for the "null" or
dictionary entry for a name of one
character of ascii null. It is the
execution procedure to terminate
interpretation of a line of text from
the terminal or within a disc buffer,
as both buffers always have a null at
the end.

XOR n1 n2 --- xor L1
Leave the bitwise logical exclusive-or
of two values.

[P,L1
Used in a colon-definition in form:
 : xxx [words] more ;
Suspend compilation. The words after
[are executed, not compiled. This
allows calculation or compilation
exceptions before resuming compilation
with]. See LITERAL,].

[COMPILE] P,C
Used in a colon-definition in form:
 : xxx [COMPILE] FORTH ;
[COMPILE] will force the compilation
of an immediate definition, that would
otherwise execute during compilation.
The above example will select the FORTH
vocabulary when xxx executes, rather
than at compile time.

] L1
Resume compilation, to the completion of
a colon-definition. See [.

14.

